Minor code cleanup.

This commit is contained in:
Stephen Chung
2020-04-01 09:51:33 +08:00
parent dcf5eaf64d
commit d7ac57c060
5 changed files with 223 additions and 224 deletions

212
README.md
View File

@@ -179,7 +179,7 @@ let result = engine.eval::<i64>("40 + 2")?; // return type is i64, specified
let result: i64 = engine.eval("40 + 2")?; // return type is inferred to be i64
let result = engine.eval<String>("40 + 2")?; // returns an error because the actual return type is i64, not String
let result = engine.eval::<String>("40 + 2")?; // returns an error because the actual return type is i64, not String
```
Evaluate a script file directly:
@@ -301,7 +301,7 @@ type_of('c') == "char";
type_of(42) == "i64";
let x = 123;
x.type_of(); // error - 'type_of' cannot use method-call style
x.type_of(); // <- error: 'type_of' cannot use method-call style
type_of(x) == "i64";
x = 99.999;
@@ -325,7 +325,7 @@ That's about it. For other conversions, register custom conversion functions.
```rust
let x = 42;
let y = x * 100.0; // error: cannot multiply i64 with f64
let y = x * 100.0; // <- error: cannot multiply i64 with f64
let y = x.to_float() * 100.0; // works
let z = y.to_int() + x; // works
@@ -341,8 +341,8 @@ To call these functions, they need to be registered with the [`Engine`].
```rust
use rhai::{Engine, EvalAltResult};
use rhai::RegisterFn; // use `RegisterFn` trait for `register_fn`
use rhai::{Dynamic, RegisterDynamicFn}; // use `RegisterDynamicFn` trait for `register_dynamic_fn`
use rhai::RegisterFn; // use `RegisterFn` trait for `register_fn`
use rhai::{Dynamic, RegisterDynamicFn}; // use `RegisterDynamicFn` trait for `register_dynamic_fn`
// Normal function
fn add(x: i64, y: i64) -> i64 {
@@ -362,14 +362,14 @@ fn main() -> Result<(), EvalAltResult>
let result = engine.eval::<i64>("add(40, 2)")?;
println!("Answer: {}", result); // prints 42
println!("Answer: {}", result); // prints 42
// Functions that return Dynamic values must use register_dynamic_fn()
engine.register_dynamic_fn("get_an_any", get_an_any);
let result = engine.eval::<i64>("get_an_any()")?;
println!("Answer: {}", result); // prints 42
println!("Answer: {}", result); // prints 42
Ok(())
}
@@ -423,13 +423,13 @@ The function must return `Result<_, EvalAltResult>`. `EvalAltResult` implements
```rust
use rhai::{Engine, EvalAltResult, Position};
use rhai::RegisterResultFn; // use `RegisterResultFn` trait for `register_result_fn`
use rhai::RegisterResultFn; // use `RegisterResultFn` trait for `register_result_fn`
// Function that may fail
fn safe_divide(x: i64, y: i64) -> Result<i64, EvalAltResult> {
if y == 0 {
// Return an error if y is zero
Err("Division by zero detected!".into()) // short-cut to create EvalAltResult
Err("Division by zero detected!".into()) // short-cut to create EvalAltResult
} else {
Ok(x / y)
}
@@ -443,7 +443,7 @@ fn main()
engine.register_result_fn("divide", safe_divide);
if let Err(error) = engine.eval::<i64>("divide(40, 0)") {
println!("Error: {:?}", error); // prints ErrorRuntime("Division by zero detected!", (1, 1)")
println!("Error: {:?}", error); // prints ErrorRuntime("Division by zero detected!", (1, 1)")
}
}
```
@@ -745,24 +745,24 @@ Variable names are also case _sensitive_.
Variables are defined using the `let` keyword. A variable defined within a statement block is _local_ to that block.
```rust
let x = 3; // ok
let _x = 42; // ok
let x_ = 42; // also ok
let _x_ = 42; // still ok
let x = 3; // ok
let _x = 42; // ok
let x_ = 42; // also ok
let _x_ = 42; // still ok
let _ = 123; // syntax error - illegal variable name
let _9 = 9; // syntax error - illegal variable name
let _ = 123; // <- syntax error: illegal variable name
let _9 = 9; // <- syntax error: illegal variable name
let x = 42; // variable is 'x', lower case
let X = 123; // variable is 'X', upper case
let x = 42; // variable is 'x', lower case
let X = 123; // variable is 'X', upper case
x == 42;
X == 123;
{
let x = 999; // local variable 'x' shadows the 'x' in parent block
x == 999; // access to local 'x'
let x = 999; // local variable 'x' shadows the 'x' in parent block
x == 999; // access to local 'x'
}
x == 42; // the parent block's 'x' is not changed
x == 42; // the parent block's 'x' is not changed
```
Constants
@@ -772,14 +772,14 @@ Constants can be defined using the `const` keyword and are immutable. Constants
```rust
const x = 42;
print(x * 2); // prints 84
x = 123; // syntax error - cannot assign to constant
print(x * 2); // prints 84
x = 123; // <- syntax error: cannot assign to constant
```
Constants must be assigned a _value_, not an expression.
```rust
const x = 40 + 2; // syntax error - cannot assign expression to constant
const x = 40 + 2; // <- syntax error: cannot assign expression to constant
```
Numbers
@@ -1135,21 +1135,21 @@ However, if the [`no_stdlib`] feature is turned on, comparisons can only be made
types - `INT` (`i64` or `i32` depending on [`only_i32`] and [`only_i64`]), `f64` (if not [`no_float`]), string, array, `bool`, `char`.
```rust
42 == 42; // true
42 > 42; // false
"hello" > "foo"; // true
"42" == 42; // false
42 == 42; // true
42 > 42; // false
"hello" > "foo"; // true
"42" == 42; // false
```
Comparing two values of _different_ data types, or of unknown data types, always results in `false`.
```rust
42 == 42.0; // false - i64 is different from f64
42 > "42"; // false - i64 is different from string
42 <= "42"; // false again
42 == 42.0; // false - i64 is different from f64
42 > "42"; // false - i64 is different from string
42 <= "42"; // false again
let ts = new_ts(); // custom type
ts == 42; // false - types are not the same
let ts = new_ts(); // custom type
ts == 42; // false - types are not the same
```
Boolean operators
@@ -1169,11 +1169,11 @@ if the first one already proves the condition wrong.
Single boolean operators `&` and `|` always evaluate both operands.
```rust
this() || that(); // that() is not evaluated if this() is true
this() && that(); // that() is not evaluated if this() is false
this() || that(); // that() is not evaluated if this() is true
this() && that(); // that() is not evaluated if this() is false
this() | that(); // both this() and that() are evaluated
this() & that(); // both this() and that() are evaluated
this() | that(); // both this() and that() are evaluated
this() & that(); // both this() and that() are evaluated
```
Compound assignment operators
@@ -1181,13 +1181,13 @@ Compound assignment operators
```rust
let number = 5;
number += 4; // number = number + 4
number -= 3; // number = number - 3
number *= 2; // number = number * 2
number /= 1; // number = number / 1
number %= 3; // number = number % 3
number <<= 2; // number = number << 2
number >>= 1; // number = number >> 1
number += 4; // number = number + 4
number -= 3; // number = number - 3
number *= 2; // number = number * 2
number /= 1; // number = number / 1
number %= 3; // number = number % 3
number <<= 2; // number = number << 2
number >>= 1; // number = number >> 1
```
The `+=` operator can also be used to build strings:
@@ -1286,9 +1286,9 @@ for x in range(0, 50) {
-------------------
```rust
return; // equivalent to return ();
return; // equivalent to return ();
return 123 + 456; // returns 579
return 123 + 456; // returns 579
```
Errors and `throw`-ing exceptions
@@ -1299,10 +1299,10 @@ To deliberately return an error during an evaluation, use the `throw` keyword.
```rust
if some_bad_condition_has_happened {
throw error; // 'throw' takes a string to form the exception text
throw error; // 'throw' takes a string as the exception text
}
throw; // empty exception text: ""
throw; // defaults to empty exception text: ""
```
Exceptions thrown via `throw` in the script can be captured by matching `Err(EvalAltResult::ErrorRuntime(`_reason_`, `_position_`))`
@@ -1317,7 +1317,7 @@ let result = engine.eval::<i64>(r#"
}
"#);
println!(result); // prints "Runtime error: 42 is too large! (line 5, position 15)"
println!(result); // prints "Runtime error: 42 is too large! (line 5, position 15)"
```
Functions
@@ -1339,16 +1339,17 @@ Just like in Rust, an implicit return can be used. In fact, the last statement o
regardless of whether it is terminated with a semicolon `';'`. This is different from Rust.
```rust
fn add(x, y) {
x + y; // value of the last statement (no need for ending semicolon) is used as the return value
fn add(x, y) { // implicit return:
x + y; // value of the last statement (no need for ending semicolon)
// is used as the return value
}
fn add2(x) {
return x + 2; // explicit return
return x + 2; // explicit return
}
print(add(2, 3)); // prints 5
print(add2(42)); // prints 44
print(add(2, 3)); // prints 5
print(add2(42)); // prints 44
```
### No access to external scope
@@ -1358,7 +1359,7 @@ Functions can only access their parameters. They cannot access external variabl
```rust
let x = 42;
fn foo() { x } // syntax error - variable 'x' doesn't exist
fn foo() { x } // <- syntax error: variable 'x' doesn't exist
```
### Passing arguments by value
@@ -1368,13 +1369,13 @@ It is important to remember that all arguments are passed by _value_, so all fun
Any update to an argument will **not** be reflected back to the caller. This can introduce subtle bugs, if not careful.
```rust
fn change(s) { // 's' is passed by value
s = 42; // only a COPY of 's' is changed
fn change(s) { // 's' is passed by value
s = 42; // only a COPY of 's' is changed
}
let x = 500;
x.change(); // de-sugars to change(x)
x == 500; // 'x' is NOT changed!
x.change(); // de-sugars to change(x)
x == 500; // 'x' is NOT changed!
```
### Global definitions only
@@ -1389,7 +1390,7 @@ fn add(x, y) {
// The following will not compile
fn do_addition(x) {
fn add_y(n) { // functions cannot be defined inside another function
fn add_y(n) { // functions cannot be defined inside another function
n + y
}
@@ -1410,10 +1411,10 @@ fn foo(x,y) { print("Two! " + x + "," + y) }
fn foo() { print("None.") }
fn foo(x) { print("HA! NEW ONE! " + x) } // overwrites previous definition
foo(1,2,3); // prints "Three!!! 1,2,3"
foo(42); // prints "HA! NEW ONE! 42"
foo(1,2); // prints "Two!! 1,2"
foo(); // prints "None."
foo(1,2,3); // prints "Three!!! 1,2,3"
foo(42); // prints "HA! NEW ONE! 42"
foo(1,2); // prints "Two!! 1,2"
foo(); // prints "None."
```
Members and methods
@@ -1422,11 +1423,12 @@ Members and methods
Properties and methods in a Rust custom type registered with the [`Engine`] can be called just like in Rust.
```rust
let a = new_ts(); // constructor function
a.field = 500; // property access
a.update(); // method call
let a = new_ts(); // constructor function
a.field = 500; // property access
a.update(); // method call
update(a); // this works, but 'a' is unchanged because only a COPY of 'a' is passed to 'update' by VALUE
update(a); // this works, but 'a' is unchanged because only
// a COPY of 'a' is passed to 'update' by VALUE
```
Custom types, properties and methods can be disabled via the [`no_object`] feature.
@@ -1437,10 +1439,10 @@ Custom types, properties and methods can be disabled via the [`no_object`] featu
The `print` and `debug` functions default to printing to `stdout`, with `debug` using standard debug formatting.
```rust
print("hello"); // prints hello to stdout
print(1 + 2 + 3); // prints 6 to stdout
print("hello" + 42); // prints hello42 to stdout
debug("world!"); // prints "world!" to stdout using debug formatting
print("hello"); // prints hello to stdout
print(1 + 2 + 3); // prints 6 to stdout
print("hello" + 42); // prints hello42 to stdout
debug("world!"); // prints "world!" to stdout using debug formatting
```
### Overriding `print` and `debug` with callback functions
@@ -1481,14 +1483,13 @@ For example, in the following:
```rust
{
let x = 999; // NOT eliminated - Rhai doesn't check yet whether a variable is used later on
123; // eliminated - no effect
"hello"; // eliminated - no effect
[1, 2, x, x*2, 5]; // eliminated - no effect
foo(42); // NOT eliminated - the function 'foo' may have side effects
666 // NOT eliminated - this is the return value of the block,
// and the block is the last one
// so this is the return value of the whole script
let x = 999; // NOT eliminated: Rhai doesn't check yet whether a variable is used later on
123; // eliminated: no effect
"hello"; // eliminated: no effect
[1, 2, x, x*2, 5]; // eliminated: no effect
foo(42); // NOT eliminated: the function 'foo' may have side effects
666 // NOT eliminated: this is the return value of the block,
// and the block is the last one so this is the return value of the whole script
}
```
@@ -1511,7 +1512,7 @@ if ABC || some_work() { print("done!"); } // 'ABC' is constant so it is replac
if true || some_work() { print("done!"); } // since '||' short-circuits, 'some_work' is never called
if true { print("done!"); } // <- the line above is equivalent to this
print("done!"); // <- the line above is further simplified to this
// because the condition is always true
// because the condition is always true
```
These are quite effective for template-based machine-generated scripts where certain constant values
@@ -1526,7 +1527,7 @@ so they are not optimized away:
const DECISION = 1;
if DECISION == 1 { // NOT optimized away because you can define
: // your own '==' function to override the built-in default!
: // your own '==' function to override the built-in default!
:
} else if DECISION == 2 { // same here, NOT optimized away
:
@@ -1596,14 +1597,15 @@ evaluated all function calls with constant arguments, using the result to replac
// When compiling the following with OptimizationLevel::Full...
const DECISION = 1;
// this condition is now eliminated because 'DECISION == 1'
if DECISION == 1 { // is a function call to the '==' function, and it returns 'true'
print("hello!"); // this block is promoted to the parent level
// this condition is now eliminated because 'DECISION == 1'
if DECISION == 1 { // is a function call to the '==' function, and it returns 'true'
print("hello!"); // this block is promoted to the parent level
} else {
print("boo!"); // this block is eliminated because it is never reached
print("boo!"); // this block is eliminated because it is never reached
}
print("hello!"); // <- the above is equivalent to this ('print' and 'debug' are handled specially)
print("hello!"); // <- the above is equivalent to this
// ('print' and 'debug' are handled specially)
```
Because of the eager evaluation of functions, many constant expressions will be evaluated and replaced by the result.
@@ -1612,8 +1614,8 @@ This does not happen with [`OptimizationLevel::Simple`] which doesn't assume all
```rust
// When compiling the following with OptimizationLevel::Full...
let x = (1 + 2) * 3 - 4 / 5 % 6; // <- will be replaced by 'let x = 9'
let y = (1 > 2) || (3 <= 4); // <- will be replaced by 'let y = true'
let x = (1+2)*3-4/5%6; // <- will be replaced by 'let x = 9'
let y = (1>2) || (3<=4); // <- will be replaced by 'let y = true'
```
Function side effect considerations
@@ -1644,13 +1646,13 @@ Subtle semantic changes
Some optimizations can alter subtle semantics of the script. For example:
```rust
if true { // condition always true
123.456; // eliminated
hello; // eliminated, EVEN THOUGH the variable doesn't exist!
foo(42) // promoted up-level
if true { // condition always true
123.456; // eliminated
hello; // eliminated, EVEN THOUGH the variable doesn't exist!
foo(42) // promoted up-level
}
foo(42) // <- the above optimizes to this
foo(42) // <- the above optimizes to this
```
Nevertheless, if the original script were evaluated instead, it would have been an error - the variable `hello` doesn't exist,
@@ -1696,22 +1698,22 @@ let x = 10;
fn foo(x) { x += 12; x }
let script = "let y = x;"; // build a script
let script = "let y = x;"; // build a script
script += "y += foo(y);";
script += "x + y";
let result = eval(script); // <- look, JS, we can also do this!
let result = eval(script); // <- look, JS, we can also do this!
print("Answer: " + result); // prints 42
print("Answer: " + result); // prints 42
print("x = " + x); // prints 10 - functions call arguments are passed by value
print("y = " + y); // prints 32 - variables defined in 'eval' persist!
print("x = " + x); // prints 10: functions call arguments are passed by value
print("y = " + y); // prints 32: variables defined in 'eval' persist!
eval("{ let z = y }"); // to keep a variable local, use a statement block
eval("{ let z = y }"); // to keep a variable local, use a statement block
print("z = " + z); // error - variable 'z' not found
print("z = " + z); // <- error: variable 'z' not found
"print(42)".eval(); // nope - just like 'type_of', method-call style doesn't work
"print(42)".eval(); // <- nope... just like 'type_of', method-call style doesn't work
```
Script segments passed to `eval` execute inside the current [`Scope`], so they can access and modify _everything_,
@@ -1721,8 +1723,8 @@ physically pasted in at the position of the `eval` call.
```rust
let script = "x += 32";
let x = 10;
eval(script); // variable 'x' in the current scope is visible!
print(x); // prints 42
eval(script); // variable 'x' in the current scope is visible!
print(x); // prints 42
// The above is equivalent to:
let script = "x += 32";
@@ -1737,7 +1739,7 @@ disable `eval` by overriding it, probably with something that throws.
```rust
fn eval(script) { throw "eval is evil! I refuse to run " + script }
let x = eval("40 + 2"); // 'eval' here throws "eval is evil! I refuse to run 40 + 2"
let x = eval("40 + 2"); // 'eval' here throws "eval is evil! I refuse to run 40 + 2"
```
Or override it from Rust: