Code structure refactor.

This commit is contained in:
Stephen Chung
2020-10-29 11:37:51 +08:00
parent cbd7ed2ca7
commit 4e115d2bc2
27 changed files with 899 additions and 867 deletions

View File

@@ -1,35 +1,36 @@
//! Main module defining the lexer and parser.
use crate::ast::AST;
use crate::ast::{BinaryExpr, CustomExpr, Expr, Ident, IdentX, ReturnType, ScriptFnDef, Stmt, AST};
use crate::dynamic::{Dynamic, Union};
use crate::engine::{Engine, KEYWORD_THIS, MARKER_BLOCK, MARKER_EXPR, MARKER_IDENT};
use crate::fn_native::{FnPtr, Shared};
use crate::module::{Module, ModuleRef};
use crate::module::ModuleRef;
use crate::optimize::{optimize_into_ast, OptimizationLevel};
use crate::parse_error::{LexError, ParseError, ParseErrorType};
use crate::scope::{EntryType as ScopeEntryType, Scope};
use crate::syntax::{CustomSyntax, FnCustomSyntaxEval};
use crate::syntax::CustomSyntax;
use crate::token::{is_keyword_function, is_valid_identifier, Position, Token, TokenStream};
use crate::utils::StraightHasherBuilder;
use crate::{calc_script_fn_hash, StaticVec};
#[cfg(not(feature = "no_index"))]
use crate::engine::Array;
#[cfg(not(feature = "no_float"))]
use crate::ast::FloatWrapper;
#[cfg(not(feature = "no_object"))]
use crate::engine::{make_getter, make_setter, Map, KEYWORD_EVAL, KEYWORD_FN_PTR};
use crate::engine::{make_getter, make_setter, KEYWORD_EVAL, KEYWORD_FN_PTR};
#[cfg(not(feature = "no_function"))]
use crate::engine::{FN_ANONYMOUS, KEYWORD_FN_PTR_CURRY};
use crate::{
ast::FnAccess,
engine::{FN_ANONYMOUS, KEYWORD_FN_PTR_CURRY},
utils::ImmutableString,
};
use crate::stdlib::{
any::TypeId,
borrow::Cow,
boxed::Box,
char,
collections::HashMap,
fmt, format,
hash::{Hash, Hasher},
format,
hash::Hash,
iter::empty,
num::NonZeroUsize,
string::{String, ToString},
@@ -37,138 +38,21 @@ use crate::stdlib::{
vec::Vec,
};
#[cfg(not(feature = "no_function"))]
use crate::stdlib::hash::Hasher;
#[cfg(not(feature = "no_std"))]
#[cfg(not(feature = "no_function"))]
use crate::stdlib::collections::hash_map::DefaultHasher;
#[cfg(not(feature = "no_closure"))]
use crate::stdlib::collections::HashSet;
#[cfg(feature = "no_std")]
#[cfg(not(feature = "no_function"))]
use ahash::AHasher;
/// The system integer type.
///
/// If the `only_i32` feature is enabled, this will be `i32` instead.
#[cfg(not(feature = "only_i32"))]
pub type INT = i64;
/// The system integer type.
///
/// If the `only_i32` feature is not enabled, this will be `i64` instead.
#[cfg(feature = "only_i32")]
pub type INT = i32;
/// The system floating-point type.
///
/// Not available under the `no_float` feature.
#[cfg(not(feature = "no_float"))]
pub type FLOAT = f64;
type PERR = ParseErrorType;
pub use crate::utils::ImmutableString;
type FunctionsLib = HashMap<u64, ScriptFnDef, StraightHasherBuilder>;
/// A type representing the access mode of a scripted function.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub enum FnAccess {
/// Public function.
Public,
/// Private function.
Private,
}
impl fmt::Display for FnAccess {
#[inline(always)]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Private => write!(f, "private"),
Self::Public => write!(f, "public"),
}
}
}
impl FnAccess {
/// Is this access mode private?
#[inline(always)]
pub fn is_private(self) -> bool {
match self {
Self::Public => false,
Self::Private => true,
}
}
/// Is this access mode public?
#[inline(always)]
pub fn is_public(self) -> bool {
match self {
Self::Public => true,
Self::Private => false,
}
}
}
/// _[INTERNALS]_ A type containing information on a scripted function.
/// Exported under the `internals` feature only.
///
/// ## WARNING
///
/// This type is volatile and may change.
#[derive(Debug, Clone)]
pub struct ScriptFnDef {
/// Function name.
pub name: ImmutableString,
/// Function access mode.
pub access: FnAccess,
/// Names of function parameters.
pub params: StaticVec<String>,
/// Access to external variables.
#[cfg(not(feature = "no_closure"))]
pub externals: HashSet<String>,
/// Function body.
pub body: Stmt,
/// Position of the function definition.
pub pos: Position,
/// Encapsulated running environment, if any.
pub lib: Option<Shared<Module>>,
}
impl fmt::Display for ScriptFnDef {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"{}{}({})",
if self.access.is_private() {
"private "
} else {
""
},
self.name,
self.params
.iter()
.map(|s| s.as_str())
.collect::<Vec<_>>()
.join(",")
)
}
}
/// _[INTERNALS]_ A type encapsulating the mode of a `return`/`throw` statement.
/// Exported under the `internals` feature only.
///
/// ## WARNING
///
/// This type is volatile and may change.
#[derive(Debug, Eq, PartialEq, Clone, Copy, Hash)]
pub enum ReturnType {
/// `return` statement.
Return,
/// `throw` statement.
Exception,
}
#[derive(Clone)]
struct ParseState<'e> {
/// Reference to the scripting `Engine`.
@@ -317,664 +201,6 @@ impl ParseSettings {
}
}
}
/// An identifier containing a string name and a position.
#[derive(Debug, Clone, Hash)]
pub struct Ident {
pub name: String,
pub pos: Position,
}
impl Ident {
/// Create a new `Identifier`.
pub fn new(name: String, pos: Position) -> Self {
Self { name, pos }
}
}
/// An identifier containing an immutable name and a position.
#[derive(Debug, Clone, Hash)]
pub struct IdentX {
pub name: ImmutableString,
pub pos: Position,
}
impl IdentX {
/// Create a new `Identifier`.
pub fn new(name: impl Into<ImmutableString>, pos: Position) -> Self {
Self {
name: name.into(),
pos,
}
}
}
/// _[INTERNALS]_ A Rhai statement.
/// Exported under the `internals` feature only.
///
/// Each variant is at most one pointer in size (for speed),
/// with everything being allocated together in one single tuple.
#[derive(Debug, Clone, Hash)]
pub enum Stmt {
/// No-op.
Noop(Position),
/// if expr { stmt } else { stmt }
IfThenElse(Expr, Box<(Stmt, Option<Stmt>)>, Position),
/// while expr { stmt }
While(Expr, Box<Stmt>, Position),
/// loop { stmt }
Loop(Box<Stmt>, Position),
/// for id in expr { stmt }
For(Expr, Box<(String, Stmt)>, Position),
/// let id = expr
Let(Box<Ident>, Option<Expr>, Position),
/// const id = expr
Const(Box<Ident>, Option<Expr>, Position),
/// expr op= expr
Assignment(Box<(Expr, Cow<'static, str>, Expr)>, Position),
/// { stmt; ... }
Block(Vec<Stmt>, Position),
/// try { stmt; ... } catch ( var ) { stmt; ... }
TryCatch(Box<(Stmt, Option<Ident>, Stmt, (Position, Position))>),
/// expr
Expr(Expr),
/// continue
Continue(Position),
/// break
Break(Position),
/// return/throw
ReturnWithVal((ReturnType, Position), Option<Expr>, Position),
/// import expr as var
#[cfg(not(feature = "no_module"))]
Import(Expr, Option<Box<IdentX>>, Position),
/// export var as var, ...
#[cfg(not(feature = "no_module"))]
Export(Vec<(Ident, Option<Ident>)>, Position),
/// Convert a variable to shared.
#[cfg(not(feature = "no_closure"))]
Share(Ident),
}
impl Default for Stmt {
#[inline(always)]
fn default() -> Self {
Self::Noop(Default::default())
}
}
impl Stmt {
/// Is this statement `Noop`?
pub fn is_noop(&self) -> bool {
match self {
Self::Noop(_) => true,
_ => false,
}
}
/// Get the `Position` of this statement.
pub fn position(&self) -> Position {
match self {
Self::Noop(pos)
| Self::Continue(pos)
| Self::Break(pos)
| Self::Block(_, pos)
| Self::Assignment(_, pos)
| Self::IfThenElse(_, _, pos)
| Self::While(_, _, pos)
| Self::Loop(_, pos)
| Self::For(_, _, pos)
| Self::ReturnWithVal((_, pos), _, _) => *pos,
Self::Let(x, _, _) | Self::Const(x, _, _) => x.pos,
Self::TryCatch(x) => (x.3).0,
Self::Expr(x) => x.position(),
#[cfg(not(feature = "no_module"))]
Self::Import(_, _, pos) => *pos,
#[cfg(not(feature = "no_module"))]
Self::Export(_, pos) => *pos,
#[cfg(not(feature = "no_closure"))]
Self::Share(Ident { pos, .. }) => *pos,
}
}
/// Override the `Position` of this statement.
pub fn set_position(&mut self, new_pos: Position) -> &mut Self {
match self {
Self::Noop(pos)
| Self::Continue(pos)
| Self::Break(pos)
| Self::Block(_, pos)
| Self::Assignment(_, pos)
| Self::IfThenElse(_, _, pos)
| Self::While(_, _, pos)
| Self::Loop(_, pos)
| Self::For(_, _, pos)
| Self::ReturnWithVal((_, pos), _, _) => *pos = new_pos,
Self::Let(x, _, _) | Self::Const(x, _, _) => x.pos = new_pos,
Self::TryCatch(x) => (x.3).0 = new_pos,
Self::Expr(x) => {
x.set_position(new_pos);
}
#[cfg(not(feature = "no_module"))]
Self::Import(_, _, pos) => *pos = new_pos,
#[cfg(not(feature = "no_module"))]
Self::Export(_, pos) => *pos = new_pos,
#[cfg(not(feature = "no_closure"))]
Self::Share(Ident { pos, .. }) => *pos = new_pos,
}
self
}
/// Is this statement self-terminated (i.e. no need for a semicolon terminator)?
pub fn is_self_terminated(&self) -> bool {
match self {
Self::IfThenElse(_, _, _)
| Self::While(_, _, _)
| Self::Loop(_, _)
| Self::For(_, _, _)
| Self::Block(_, _)
| Self::TryCatch(_) => true,
// A No-op requires a semicolon in order to know it is an empty statement!
Self::Noop(_) => false,
Self::Let(_, _, _)
| Self::Const(_, _, _)
| Self::Assignment(_, _)
| Self::Expr(_)
| Self::Continue(_)
| Self::Break(_)
| Self::ReturnWithVal(_, _, _) => false,
#[cfg(not(feature = "no_module"))]
Self::Import(_, _, _) | Self::Export(_, _) => false,
#[cfg(not(feature = "no_closure"))]
Self::Share(_) => false,
}
}
/// Is this statement _pure_?
pub fn is_pure(&self) -> bool {
match self {
Self::Noop(_) => true,
Self::Expr(expr) => expr.is_pure(),
Self::IfThenElse(condition, x, _) if x.1.is_some() => {
condition.is_pure() && x.0.is_pure() && x.1.as_ref().unwrap().is_pure()
}
Self::IfThenElse(condition, x, _) => condition.is_pure() && x.0.is_pure(),
Self::While(condition, block, _) => condition.is_pure() && block.is_pure(),
Self::Loop(block, _) => block.is_pure(),
Self::For(iterable, x, _) => iterable.is_pure() && x.1.is_pure(),
Self::Let(_, _, _) | Self::Const(_, _, _) | Self::Assignment(_, _) => false,
Self::Block(block, _) => block.iter().all(|stmt| stmt.is_pure()),
Self::Continue(_) | Self::Break(_) | Self::ReturnWithVal(_, _, _) => false,
Self::TryCatch(x) => x.0.is_pure() && x.2.is_pure(),
#[cfg(not(feature = "no_module"))]
Self::Import(_, _, _) => false,
#[cfg(not(feature = "no_module"))]
Self::Export(_, _) => false,
#[cfg(not(feature = "no_closure"))]
Self::Share(_) => false,
}
}
}
/// _[INTERNALS]_ A type wrapping a custom syntax definition.
/// Exported under the `internals` feature only.
///
/// ## WARNING
///
/// This type is volatile and may change.
#[derive(Clone)]
pub struct CustomExpr {
pub(crate) keywords: StaticVec<Expr>,
pub(crate) func: Shared<FnCustomSyntaxEval>,
pub(crate) pos: Position,
}
impl fmt::Debug for CustomExpr {
#[inline(always)]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&self.keywords, f)
}
}
impl Hash for CustomExpr {
#[inline(always)]
fn hash<H: Hasher>(&self, state: &mut H) {
self.keywords.hash(state);
}
}
impl CustomExpr {
/// Get the keywords for this `CustomExpr`.
#[inline(always)]
pub fn keywords(&self) -> &[Expr] {
&self.keywords
}
/// Get the implementation function for this `CustomExpr`.
#[inline(always)]
pub fn func(&self) -> &FnCustomSyntaxEval {
self.func.as_ref()
}
/// Get the position of this `CustomExpr`.
#[inline(always)]
pub fn position(&self) -> Position {
self.pos
}
}
/// _[INTERNALS]_ A type wrapping a floating-point number.
/// Exported under the `internals` feature only.
///
/// This type is mainly used to provide a standard `Hash` implementation
/// to floating-point numbers, allowing `Expr` to derive `Hash` automatically.
///
/// ## WARNING
///
/// This type is volatile and may change.
#[cfg(not(feature = "no_float"))]
#[derive(Debug, PartialEq, PartialOrd, Clone)]
pub struct FloatWrapper(pub FLOAT, pub Position);
#[cfg(not(feature = "no_float"))]
impl Hash for FloatWrapper {
#[inline(always)]
fn hash<H: Hasher>(&self, state: &mut H) {
state.write(&self.0.to_le_bytes());
self.1.hash(state);
}
}
/// A binary expression structure.
#[derive(Debug, Clone, Hash)]
pub struct BinaryExpr {
pub lhs: Expr,
pub rhs: Expr,
pub pos: Position,
}
/// _[INTERNALS]_ An expression sub-tree.
/// Exported under the `internals` feature only.
///
/// Each variant is at most one pointer in size (for speed),
/// with everything being allocated together in one single tuple.
///
/// ## WARNING
///
/// This type is volatile and may change.
#[derive(Debug, Clone, Hash)]
pub enum Expr {
/// Integer constant.
IntegerConstant(Box<(INT, Position)>),
/// Floating-point constant.
#[cfg(not(feature = "no_float"))]
FloatConstant(Box<FloatWrapper>),
/// Character constant.
CharConstant(Box<(char, Position)>),
/// String constant.
StringConstant(Box<IdentX>),
/// FnPtr constant.
FnPointer(Box<IdentX>),
/// Variable access - ((variable name, position), optional modules, hash, optional index)
Variable(Box<(Ident, Option<Box<ModuleRef>>, u64, Option<NonZeroUsize>)>),
/// Property access.
Property(Box<((ImmutableString, String, String), Position)>),
/// { stmt }
Stmt(Box<(Stmt, Position)>),
/// Wrapped expression - should not be optimized away.
Expr(Box<Expr>),
/// func(expr, ... ) - ((function name, native_only, capture, position), optional modules, hash, arguments, optional default value)
/// Use `Cow<'static, str>` because a lot of operators (e.g. `==`, `>=`) are implemented as function calls
/// and the function names are predictable, so no need to allocate a new `String`.
FnCall(
Box<(
(Cow<'static, str>, bool, bool, Position),
Option<Box<ModuleRef>>,
u64,
StaticVec<Expr>,
Option<bool>, // Default value is `bool` in order for `Expr` to be `Hash`.
)>,
),
/// lhs.rhs
Dot(Box<BinaryExpr>),
/// expr[expr]
Index(Box<BinaryExpr>),
/// [ expr, ... ]
Array(Box<(StaticVec<Expr>, Position)>),
/// #{ name:expr, ... }
Map(Box<(StaticVec<(IdentX, Expr)>, Position)>),
/// lhs in rhs
In(Box<BinaryExpr>),
/// lhs && rhs
And(Box<BinaryExpr>),
/// lhs || rhs
Or(Box<BinaryExpr>),
/// true
True(Position),
/// false
False(Position),
/// ()
Unit(Position),
/// Custom syntax
Custom(Box<CustomExpr>),
}
impl Default for Expr {
#[inline(always)]
fn default() -> Self {
Self::Unit(Default::default())
}
}
impl Expr {
/// Get the type of an expression.
///
/// Returns `None` if the expression's result type is not constant.
pub fn get_type_id(&self) -> Option<TypeId> {
Some(match self {
Self::Expr(x) => return x.get_type_id(),
Self::IntegerConstant(_) => TypeId::of::<INT>(),
#[cfg(not(feature = "no_float"))]
Self::FloatConstant(_) => TypeId::of::<FLOAT>(),
Self::CharConstant(_) => TypeId::of::<char>(),
Self::StringConstant(_) => TypeId::of::<ImmutableString>(),
Self::FnPointer(_) => TypeId::of::<FnPtr>(),
Self::True(_) | Self::False(_) | Self::In(_) | Self::And(_) | Self::Or(_) => {
TypeId::of::<bool>()
}
Self::Unit(_) => TypeId::of::<()>(),
#[cfg(not(feature = "no_index"))]
Self::Array(_) => TypeId::of::<Array>(),
#[cfg(not(feature = "no_object"))]
Self::Map(_) => TypeId::of::<Map>(),
_ => return None,
})
}
/// Get the `Dynamic` value of a constant expression.
///
/// Returns `None` if the expression is not constant.
pub fn get_constant_value(&self) -> Option<Dynamic> {
Some(match self {
Self::Expr(x) => return x.get_constant_value(),
Self::IntegerConstant(x) => x.0.into(),
#[cfg(not(feature = "no_float"))]
Self::FloatConstant(x) => x.0.into(),
Self::CharConstant(x) => x.0.into(),
Self::StringConstant(x) => x.name.clone().into(),
Self::FnPointer(x) => Dynamic(Union::FnPtr(Box::new(FnPtr::new_unchecked(
x.name.clone(),
Default::default(),
)))),
Self::True(_) => true.into(),
Self::False(_) => false.into(),
Self::Unit(_) => ().into(),
#[cfg(not(feature = "no_index"))]
Self::Array(x) if x.0.iter().all(Self::is_constant) => Dynamic(Union::Array(Box::new(
x.0.iter()
.map(|v| v.get_constant_value().unwrap())
.collect(),
))),
#[cfg(not(feature = "no_object"))]
Self::Map(x) if x.0.iter().all(|(_, v)| v.is_constant()) => {
Dynamic(Union::Map(Box::new(
x.0.iter()
.map(|(k, v)| (k.name.clone(), v.get_constant_value().unwrap()))
.collect(),
)))
}
_ => return None,
})
}
/// Is the expression a simple variable access?
pub(crate) fn get_variable_access(&self, non_qualified: bool) -> Option<&str> {
match self {
Self::Variable(x) if !non_qualified || x.1.is_none() => Some((x.0).name.as_str()),
_ => None,
}
}
/// Get the `Position` of the expression.
pub fn position(&self) -> Position {
match self {
Self::Expr(x) => x.position(),
#[cfg(not(feature = "no_float"))]
Self::FloatConstant(x) => x.1,
Self::IntegerConstant(x) => x.1,
Self::CharConstant(x) => x.1,
Self::StringConstant(x) => x.pos,
Self::FnPointer(x) => x.pos,
Self::Array(x) => x.1,
Self::Map(x) => x.1,
Self::Property(x) => x.1,
Self::Stmt(x) => x.1,
Self::Variable(x) => (x.0).pos,
Self::FnCall(x) => (x.0).3,
Self::And(x) | Self::Or(x) | Self::In(x) => x.pos,
Self::True(pos) | Self::False(pos) | Self::Unit(pos) => *pos,
Self::Dot(x) | Self::Index(x) => x.lhs.position(),
Self::Custom(x) => x.pos,
}
}
/// Override the `Position` of the expression.
pub fn set_position(&mut self, new_pos: Position) -> &mut Self {
match self {
Self::Expr(x) => {
x.set_position(new_pos);
}
#[cfg(not(feature = "no_float"))]
Self::FloatConstant(x) => x.1 = new_pos,
Self::IntegerConstant(x) => x.1 = new_pos,
Self::CharConstant(x) => x.1 = new_pos,
Self::StringConstant(x) => x.pos = new_pos,
Self::FnPointer(x) => x.pos = new_pos,
Self::Array(x) => x.1 = new_pos,
Self::Map(x) => x.1 = new_pos,
Self::Variable(x) => (x.0).pos = new_pos,
Self::Property(x) => x.1 = new_pos,
Self::Stmt(x) => x.1 = new_pos,
Self::FnCall(x) => (x.0).3 = new_pos,
Self::And(x) | Self::Or(x) | Self::In(x) => x.pos = new_pos,
Self::True(pos) | Self::False(pos) | Self::Unit(pos) => *pos = new_pos,
Self::Dot(x) | Self::Index(x) => x.pos = new_pos,
Self::Custom(x) => x.pos = new_pos,
}
self
}
/// Is the expression pure?
///
/// A pure expression has no side effects.
pub fn is_pure(&self) -> bool {
match self {
Self::Expr(x) => x.is_pure(),
Self::Array(x) => x.0.iter().all(Self::is_pure),
Self::Index(x) | Self::And(x) | Self::Or(x) | Self::In(x) => {
x.lhs.is_pure() && x.rhs.is_pure()
}
Self::Stmt(x) => x.0.is_pure(),
Self::Variable(_) => true,
_ => self.is_constant(),
}
}
/// Is the expression the unit `()` literal?
#[inline(always)]
pub fn is_unit(&self) -> bool {
match self {
Self::Unit(_) => true,
_ => false,
}
}
/// Is the expression a simple constant literal?
pub fn is_literal(&self) -> bool {
match self {
Self::Expr(x) => x.is_literal(),
#[cfg(not(feature = "no_float"))]
Self::FloatConstant(_) => true,
Self::IntegerConstant(_)
| Self::CharConstant(_)
| Self::StringConstant(_)
| Self::FnPointer(_)
| Self::True(_)
| Self::False(_)
| Self::Unit(_) => true,
// An array literal is literal if all items are literals
Self::Array(x) => x.0.iter().all(Self::is_literal),
// An map literal is literal if all items are literals
Self::Map(x) => x.0.iter().map(|(_, expr)| expr).all(Self::is_literal),
// Check in expression
Self::In(x) => match (&x.lhs, &x.rhs) {
(Self::StringConstant(_), Self::StringConstant(_))
| (Self::CharConstant(_), Self::StringConstant(_)) => true,
_ => false,
},
_ => false,
}
}
/// Is the expression a constant?
pub fn is_constant(&self) -> bool {
match self {
Self::Expr(x) => x.is_constant(),
#[cfg(not(feature = "no_float"))]
Self::FloatConstant(_) => true,
Self::IntegerConstant(_)
| Self::CharConstant(_)
| Self::StringConstant(_)
| Self::FnPointer(_)
| Self::True(_)
| Self::False(_)
| Self::Unit(_) => true,
// An array literal is constant if all items are constant
Self::Array(x) => x.0.iter().all(Self::is_constant),
// An map literal is constant if all items are constant
Self::Map(x) => x.0.iter().map(|(_, expr)| expr).all(Self::is_constant),
// Check in expression
Self::In(x) => match (&x.lhs, &x.rhs) {
(Self::StringConstant(_), Self::StringConstant(_))
| (Self::CharConstant(_), Self::StringConstant(_)) => true,
_ => false,
},
_ => false,
}
}
/// Is a particular token allowed as a postfix operator to this expression?
pub fn is_valid_postfix(&self, token: &Token) -> bool {
match self {
Self::Expr(x) => x.is_valid_postfix(token),
#[cfg(not(feature = "no_float"))]
Self::FloatConstant(_) => false,
Self::IntegerConstant(_)
| Self::CharConstant(_)
| Self::FnPointer(_)
| Self::In(_)
| Self::And(_)
| Self::Or(_)
| Self::True(_)
| Self::False(_)
| Self::Unit(_) => false,
Self::StringConstant(_)
| Self::Stmt(_)
| Self::FnCall(_)
| Self::Dot(_)
| Self::Index(_)
| Self::Array(_)
| Self::Map(_) => match token {
#[cfg(not(feature = "no_index"))]
Token::LeftBracket => true,
_ => false,
},
Self::Variable(_) => match token {
#[cfg(not(feature = "no_index"))]
Token::LeftBracket => true,
Token::LeftParen => true,
Token::Bang => true,
Token::DoubleColon => true,
_ => false,
},
Self::Property(_) => match token {
#[cfg(not(feature = "no_index"))]
Token::LeftBracket => true,
Token::LeftParen => true,
_ => false,
},
Self::Custom(_) => false,
}
}
/// Convert a `Variable` into a `Property`. All other variants are untouched.
#[cfg(not(feature = "no_object"))]
#[inline]
pub(crate) fn into_property(self) -> Self {
match self {
Self::Variable(x) if x.1.is_none() => {
let Ident { name, pos } = x.0;
let getter = make_getter(&name);
let setter = make_setter(&name);
Self::Property(Box::new(((name.into(), getter, setter), pos)))
}
_ => self,
}
}
}
/// Consume a particular token, checking that it is the expected one.
fn eat_token(input: &mut TokenStream, token: Token) -> Position {
let (t, pos) = input.next().unwrap();
@@ -1737,10 +963,9 @@ fn parse_unary(
.map(|i| Expr::IntegerConstant(Box::new((i, pos))))
.or_else(|| {
#[cfg(not(feature = "no_float"))]
return Some(Expr::FloatConstant(Box::new(FloatWrapper(
-(x.0 as FLOAT),
pos,
))));
return Some(Expr::FloatConstant(Box::new(
-Into::<FloatWrapper>::into(*x),
)));
#[cfg(feature = "no_float")]
return None;
})
@@ -1749,9 +974,7 @@ fn parse_unary(
// Negative float
#[cfg(not(feature = "no_float"))]
Expr::FloatConstant(x) => {
Ok(Expr::FloatConstant(Box::new(FloatWrapper(-x.0, x.1))))
}
Expr::FloatConstant(x) => Ok(Expr::FloatConstant(Box::new(-(*x)))),
// Call negative function
expr => {