Use modules to implement packages.

This commit is contained in:
Stephen Chung
2020-05-13 19:21:42 +08:00
parent d613764c03
commit 30e5e2f034
18 changed files with 610 additions and 1023 deletions

View File

@@ -1,7 +1,5 @@
use super::{reg_binary, reg_unary};
use crate::def_package;
use crate::fn_register::{map_dynamic as map, map_result as result};
use crate::module::FuncReturn;
use crate::parser::INT;
use crate::result::EvalAltResult;
use crate::token::Position;
@@ -22,7 +20,7 @@ use crate::stdlib::{
};
// Checked add
fn add<T: Display + CheckedAdd>(x: T, y: T) -> Result<T, Box<EvalAltResult>> {
fn add<T: Display + CheckedAdd>(x: T, y: T) -> FuncReturn<T> {
x.checked_add(&y).ok_or_else(|| {
Box::new(EvalAltResult::ErrorArithmetic(
format!("Addition overflow: {} + {}", x, y),
@@ -31,7 +29,7 @@ fn add<T: Display + CheckedAdd>(x: T, y: T) -> Result<T, Box<EvalAltResult>> {
})
}
// Checked subtract
fn sub<T: Display + CheckedSub>(x: T, y: T) -> Result<T, Box<EvalAltResult>> {
fn sub<T: Display + CheckedSub>(x: T, y: T) -> FuncReturn<T> {
x.checked_sub(&y).ok_or_else(|| {
Box::new(EvalAltResult::ErrorArithmetic(
format!("Subtraction underflow: {} - {}", x, y),
@@ -40,7 +38,7 @@ fn sub<T: Display + CheckedSub>(x: T, y: T) -> Result<T, Box<EvalAltResult>> {
})
}
// Checked multiply
fn mul<T: Display + CheckedMul>(x: T, y: T) -> Result<T, Box<EvalAltResult>> {
fn mul<T: Display + CheckedMul>(x: T, y: T) -> FuncReturn<T> {
x.checked_mul(&y).ok_or_else(|| {
Box::new(EvalAltResult::ErrorArithmetic(
format!("Multiplication overflow: {} * {}", x, y),
@@ -49,7 +47,7 @@ fn mul<T: Display + CheckedMul>(x: T, y: T) -> Result<T, Box<EvalAltResult>> {
})
}
// Checked divide
fn div<T>(x: T, y: T) -> Result<T, Box<EvalAltResult>>
fn div<T>(x: T, y: T) -> FuncReturn<T>
where
T: Display + CheckedDiv + PartialEq + Zero,
{
@@ -69,7 +67,7 @@ where
})
}
// Checked negative - e.g. -(i32::MIN) will overflow i32::MAX
fn neg<T: Display + CheckedNeg>(x: T) -> Result<T, Box<EvalAltResult>> {
fn neg<T: Display + CheckedNeg>(x: T) -> FuncReturn<T> {
x.checked_neg().ok_or_else(|| {
Box::new(EvalAltResult::ErrorArithmetic(
format!("Negation overflow: -{}", x),
@@ -78,7 +76,7 @@ fn neg<T: Display + CheckedNeg>(x: T) -> Result<T, Box<EvalAltResult>> {
})
}
// Checked absolute
fn abs<T: Display + CheckedNeg + PartialOrd + Zero>(x: T) -> Result<T, Box<EvalAltResult>> {
fn abs<T: Display + CheckedNeg + PartialOrd + Zero>(x: T) -> FuncReturn<T> {
// FIX - We don't use Signed::abs() here because, contrary to documentation, it panics
// when the number is ::MIN instead of returning ::MIN itself.
if x >= <T as Zero>::zero() {
@@ -93,49 +91,49 @@ fn abs<T: Display + CheckedNeg + PartialOrd + Zero>(x: T) -> Result<T, Box<EvalA
}
}
// Unchecked add - may panic on overflow
fn add_u<T: Add>(x: T, y: T) -> <T as Add>::Output {
x + y
fn add_u<T: Add>(x: T, y: T) -> FuncReturn<<T as Add>::Output> {
Ok(x + y)
}
// Unchecked subtract - may panic on underflow
fn sub_u<T: Sub>(x: T, y: T) -> <T as Sub>::Output {
x - y
fn sub_u<T: Sub>(x: T, y: T) -> FuncReturn<<T as Sub>::Output> {
Ok(x - y)
}
// Unchecked multiply - may panic on overflow
fn mul_u<T: Mul>(x: T, y: T) -> <T as Mul>::Output {
x * y
fn mul_u<T: Mul>(x: T, y: T) -> FuncReturn<<T as Mul>::Output> {
Ok(x * y)
}
// Unchecked divide - may panic when dividing by zero
fn div_u<T: Div>(x: T, y: T) -> <T as Div>::Output {
x / y
fn div_u<T: Div>(x: T, y: T) -> FuncReturn<<T as Div>::Output> {
Ok(x / y)
}
// Unchecked negative - may panic on overflow
fn neg_u<T: Neg>(x: T) -> <T as Neg>::Output {
-x
fn neg_u<T: Neg>(x: T) -> FuncReturn<<T as Neg>::Output> {
Ok(-x)
}
// Unchecked absolute - may panic on overflow
fn abs_u<T>(x: T) -> <T as Neg>::Output
fn abs_u<T>(x: T) -> FuncReturn<<T as Neg>::Output>
where
T: Neg + PartialOrd + Default + Into<<T as Neg>::Output>,
{
// Numbers should default to zero
if x < Default::default() {
-x
Ok(-x)
} else {
x.into()
Ok(x.into())
}
}
// Bit operators
fn binary_and<T: BitAnd>(x: T, y: T) -> <T as BitAnd>::Output {
x & y
fn binary_and<T: BitAnd>(x: T, y: T) -> FuncReturn<<T as BitAnd>::Output> {
Ok(x & y)
}
fn binary_or<T: BitOr>(x: T, y: T) -> <T as BitOr>::Output {
x | y
fn binary_or<T: BitOr>(x: T, y: T) -> FuncReturn<<T as BitOr>::Output> {
Ok(x | y)
}
fn binary_xor<T: BitXor>(x: T, y: T) -> <T as BitXor>::Output {
x ^ y
fn binary_xor<T: BitXor>(x: T, y: T) -> FuncReturn<<T as BitXor>::Output> {
Ok(x ^ y)
}
// Checked left-shift
fn shl<T: Display + CheckedShl>(x: T, y: INT) -> Result<T, Box<EvalAltResult>> {
fn shl<T: Display + CheckedShl>(x: T, y: INT) -> FuncReturn<T> {
// Cannot shift by a negative number of bits
if y < 0 {
return Err(Box::new(EvalAltResult::ErrorArithmetic(
@@ -152,7 +150,7 @@ fn shl<T: Display + CheckedShl>(x: T, y: INT) -> Result<T, Box<EvalAltResult>> {
})
}
// Checked right-shift
fn shr<T: Display + CheckedShr>(x: T, y: INT) -> Result<T, Box<EvalAltResult>> {
fn shr<T: Display + CheckedShr>(x: T, y: INT) -> FuncReturn<T> {
// Cannot shift by a negative number of bits
if y < 0 {
return Err(Box::new(EvalAltResult::ErrorArithmetic(
@@ -169,15 +167,15 @@ fn shr<T: Display + CheckedShr>(x: T, y: INT) -> Result<T, Box<EvalAltResult>> {
})
}
// Unchecked left-shift - may panic if shifting by a negative number of bits
fn shl_u<T: Shl<T>>(x: T, y: T) -> <T as Shl<T>>::Output {
x.shl(y)
fn shl_u<T: Shl<T>>(x: T, y: T) -> FuncReturn<<T as Shl<T>>::Output> {
Ok(x.shl(y))
}
// Unchecked right-shift - may panic if shifting by a negative number of bits
fn shr_u<T: Shr<T>>(x: T, y: T) -> <T as Shr<T>>::Output {
x.shr(y)
fn shr_u<T: Shr<T>>(x: T, y: T) -> FuncReturn<<T as Shr<T>>::Output> {
Ok(x.shr(y))
}
// Checked modulo
fn modulo<T: Display + CheckedRem>(x: T, y: T) -> Result<T, Box<EvalAltResult>> {
fn modulo<T: Display + CheckedRem>(x: T, y: T) -> FuncReturn<T> {
x.checked_rem(&y).ok_or_else(|| {
Box::new(EvalAltResult::ErrorArithmetic(
format!("Modulo division by zero or overflow: {} % {}", x, y),
@@ -186,11 +184,11 @@ fn modulo<T: Display + CheckedRem>(x: T, y: T) -> Result<T, Box<EvalAltResult>>
})
}
// Unchecked modulo - may panic if dividing by zero
fn modulo_u<T: Rem>(x: T, y: T) -> <T as Rem>::Output {
x % y
fn modulo_u<T: Rem>(x: T, y: T) -> FuncReturn<<T as Rem>::Output> {
Ok(x % y)
}
// Checked power
fn pow_i_i(x: INT, y: INT) -> Result<INT, Box<EvalAltResult>> {
fn pow_i_i(x: INT, y: INT) -> FuncReturn<INT> {
#[cfg(not(feature = "only_i32"))]
{
if y > (u32::MAX as INT) {
@@ -231,17 +229,17 @@ fn pow_i_i(x: INT, y: INT) -> Result<INT, Box<EvalAltResult>> {
}
}
// Unchecked integer power - may panic on overflow or if the power index is too high (> u32::MAX)
fn pow_i_i_u(x: INT, y: INT) -> INT {
x.pow(y as u32)
fn pow_i_i_u(x: INT, y: INT) -> FuncReturn<INT> {
Ok(x.pow(y as u32))
}
// Floating-point power - always well-defined
#[cfg(not(feature = "no_float"))]
fn pow_f_f(x: FLOAT, y: FLOAT) -> FLOAT {
x.powf(y)
fn pow_f_f(x: FLOAT, y: FLOAT) -> FuncReturn<FLOAT> {
Ok(x.powf(y))
}
// Checked power
#[cfg(not(feature = "no_float"))]
fn pow_f_i(x: FLOAT, y: INT) -> Result<FLOAT, Box<EvalAltResult>> {
fn pow_f_i(x: FLOAT, y: INT) -> FuncReturn<FLOAT> {
// Raise to power that is larger than an i32
if y > (i32::MAX as INT) {
return Err(Box::new(EvalAltResult::ErrorArithmetic(
@@ -255,39 +253,37 @@ fn pow_f_i(x: FLOAT, y: INT) -> Result<FLOAT, Box<EvalAltResult>> {
// Unchecked power - may be incorrect if the power index is too high (> i32::MAX)
#[cfg(feature = "unchecked")]
#[cfg(not(feature = "no_float"))]
fn pow_f_i_u(x: FLOAT, y: INT) -> FLOAT {
x.powi(y as i32)
fn pow_f_i_u(x: FLOAT, y: INT) -> FuncReturn<FLOAT> {
Ok(x.powi(y as i32))
}
macro_rules! reg_unary_x { ($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$(reg_unary($lib, $op, $func::<$par>, result);)* };
macro_rules! reg_unary {
($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$( $lib.set_fn_1($op, $func::<$par>); )*
};
}
macro_rules! reg_unary { ($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$(reg_unary($lib, $op, $func::<$par>, map);)* };
}
macro_rules! reg_op_x { ($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$(reg_binary($lib, $op, $func::<$par>, result);)* };
}
macro_rules! reg_op { ($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$(reg_binary($lib, $op, $func::<$par>, map);)* };
macro_rules! reg_op {
($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$( $lib.set_fn_2($op, $func::<$par>); )*
};
}
def_package!(crate:ArithmeticPackage:"Basic arithmetic", lib, {
// Checked basic arithmetic
#[cfg(not(feature = "unchecked"))]
{
reg_op_x!(lib, "+", add, INT);
reg_op_x!(lib, "-", sub, INT);
reg_op_x!(lib, "*", mul, INT);
reg_op_x!(lib, "/", div, INT);
reg_op!(lib, "+", add, INT);
reg_op!(lib, "-", sub, INT);
reg_op!(lib, "*", mul, INT);
reg_op!(lib, "/", div, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_op_x!(lib, "+", add, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op_x!(lib, "-", sub, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op_x!(lib, "*", mul, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op_x!(lib, "/", div, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, "+", add, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, "-", sub, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, "*", mul, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, "/", div, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
}
}
@@ -334,16 +330,16 @@ def_package!(crate:ArithmeticPackage:"Basic arithmetic", lib, {
// Checked bit shifts
#[cfg(not(feature = "unchecked"))]
{
reg_op_x!(lib, "<<", shl, INT);
reg_op_x!(lib, ">>", shr, INT);
reg_op_x!(lib, "%", modulo, INT);
reg_op!(lib, "<<", shl, INT);
reg_op!(lib, ">>", shr, INT);
reg_op!(lib, "%", modulo, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_op_x!(lib, "<<", shl, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op_x!(lib, ">>", shr, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op_x!(lib, "%", modulo, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, "<<", shl, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, ">>", shr, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
reg_op!(lib, "%", modulo, i8, u8, i16, u16, i32, i64, u32, u64, i128, u128);
}
}
@@ -366,39 +362,39 @@ def_package!(crate:ArithmeticPackage:"Basic arithmetic", lib, {
// Checked power
#[cfg(not(feature = "unchecked"))]
{
reg_binary(lib, "~", pow_i_i, result);
lib.set_fn_2("~", pow_i_i);
#[cfg(not(feature = "no_float"))]
reg_binary(lib, "~", pow_f_i, result);
lib.set_fn_2("~", pow_f_i);
}
// Unchecked power
#[cfg(feature = "unchecked")]
{
reg_binary(lib, "~", pow_i_i_u, map);
lib.set_fn_2("~", pow_i_i_u);
#[cfg(not(feature = "no_float"))]
reg_binary(lib, "~", pow_f_i_u, map);
lib.set_fn_2("~", pow_f_i_u);
}
// Floating-point modulo and power
#[cfg(not(feature = "no_float"))]
{
reg_op!(lib, "%", modulo_u, f32, f64);
reg_binary(lib, "~", pow_f_f, map);
lib.set_fn_2("~", pow_f_f);
}
// Checked unary
#[cfg(not(feature = "unchecked"))]
{
reg_unary_x!(lib, "-", neg, INT);
reg_unary_x!(lib, "abs", abs, INT);
reg_unary!(lib, "-", neg, INT);
reg_unary!(lib, "abs", abs, INT);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_unary_x!(lib, "-", neg, i8, i16, i32, i64, i128);
reg_unary_x!(lib, "abs", abs, i8, i16, i32, i64, i128);
reg_unary!(lib, "-", neg, i8, i16, i32, i64, i128);
reg_unary!(lib, "abs", abs, i8, i16, i32, i64, i128);
}
}

View File

@@ -1,20 +1,19 @@
#![cfg(not(feature = "no_index"))]
use super::{reg_binary, reg_binary_mut, reg_trinary_mut, reg_unary_mut};
use crate::any::{Dynamic, Variant};
use crate::def_package;
use crate::engine::Array;
use crate::fn_register::{map_dynamic as map, map_identity as pass};
use crate::module::FuncReturn;
use crate::parser::INT;
use crate::stdlib::{any::TypeId, boxed::Box, string::String};
// Register array utility functions
fn push<T: Variant + Clone>(list: &mut Array, item: T) {
fn push<T: Variant + Clone>(list: &mut Array, item: T) -> FuncReturn<()> {
list.push(Dynamic::from(item));
Ok(())
}
fn ins<T: Variant + Clone>(list: &mut Array, position: INT, item: T) {
fn ins<T: Variant + Clone>(list: &mut Array, position: INT, item: T) -> FuncReturn<()> {
if position <= 0 {
list.insert(0, Dynamic::from(item));
} else if (position as usize) >= list.len() - 1 {
@@ -22,20 +21,26 @@ fn ins<T: Variant + Clone>(list: &mut Array, position: INT, item: T) {
} else {
list.insert(position as usize, Dynamic::from(item));
}
Ok(())
}
fn pad<T: Variant + Clone>(list: &mut Array, len: INT, item: T) {
fn pad<T: Variant + Clone>(list: &mut Array, len: INT, item: T) -> FuncReturn<()> {
if len >= 0 {
while list.len() < len as usize {
push(list, item.clone());
}
}
Ok(())
}
macro_rules! reg_op { ($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$(reg_binary_mut($lib, $op, $func::<$par>, map);)* };
macro_rules! reg_op {
($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$( $lib.set_fn_2_mut($op, $func::<$par>); )*
};
}
macro_rules! reg_tri { ($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$(reg_trinary_mut($lib, $op, $func::<$par>, map);)* };
macro_rules! reg_tri {
($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$( $lib.set_fn_3_mut($op, $func::<$par>); )*
};
}
#[cfg(not(feature = "no_index"))]
@@ -44,15 +49,16 @@ def_package!(crate:BasicArrayPackage:"Basic array utilities.", lib, {
reg_tri!(lib, "pad", pad, INT, bool, char, String, Array, ());
reg_tri!(lib, "insert", ins, INT, bool, char, String, Array, ());
reg_binary_mut(lib, "append", |x: &mut Array, y: Array| x.extend(y), map);
reg_binary(
lib,
lib.set_fn_2_mut("append", |x: &mut Array, y: Array| {
x.extend(y);
Ok(())
});
lib.set_fn_2(
"+",
|mut x: Array, y: Array| {
x.extend(y);
x
Ok(x)
},
map,
);
#[cfg(not(feature = "only_i32"))]
@@ -70,40 +76,36 @@ def_package!(crate:BasicArrayPackage:"Basic array utilities.", lib, {
reg_tri!(lib, "insert", ins, f32, f64);
}
reg_unary_mut(
lib,
lib.set_fn_1_mut(
"pop",
|list: &mut Array| list.pop().unwrap_or_else(|| ().into()),
pass,
|list: &mut Array| Ok(list.pop().unwrap_or_else(|| ().into())),
);
reg_unary_mut(
lib,
lib.set_fn_1_mut(
"shift",
|list: &mut Array| {
if list.is_empty() {
Ok(if list.is_empty() {
().into()
} else {
list.remove(0)
}
})
},
pass,
);
reg_binary_mut(
lib,
lib.set_fn_2_mut(
"remove",
|list: &mut Array, len: INT| {
if len < 0 || (len as usize) >= list.len() {
Ok(if len < 0 || (len as usize) >= list.len() {
().into()
} else {
list.remove(len as usize)
}
})
},
pass,
);
reg_unary_mut(lib, "len", |list: &mut Array| list.len() as INT, map);
reg_unary_mut(lib, "clear", |list: &mut Array| list.clear(), map);
reg_binary_mut(
lib,
lib.set_fn_1_mut("len", |list: &mut Array| Ok(list.len() as INT));
lib.set_fn_1_mut("clear", |list: &mut Array| {
list.clear();
Ok(())
});
lib.set_fn_2_mut(
"truncate",
|list: &mut Array, len: INT| {
if len >= 0 {
@@ -111,12 +113,12 @@ def_package!(crate:BasicArrayPackage:"Basic array utilities.", lib, {
} else {
list.clear();
}
Ok(())
},
map,
);
// Register array iterator
lib.type_iterators.insert(
lib.set_iterator(
TypeId::of::<Array>(),
Box::new(|arr| Box::new(
arr.cast::<Array>().into_iter()) as Box<dyn Iterator<Item = Dynamic>>

View File

@@ -1,8 +1,6 @@
use super::{reg_binary, reg_trinary, PackageStore};
use crate::any::{Dynamic, Variant};
use crate::def_package;
use crate::fn_register::map_dynamic as map;
use crate::module::{FuncReturn, Module};
use crate::parser::INT;
use crate::stdlib::{
@@ -12,11 +10,11 @@ use crate::stdlib::{
};
// Register range function
fn reg_range<T: Variant + Clone>(lib: &mut PackageStore)
fn reg_range<T: Variant + Clone>(lib: &mut Module)
where
Range<T>: Iterator<Item = T>,
{
lib.type_iterators.insert(
lib.set_iterator(
TypeId::of::<Range<T>>(),
Box::new(|source| {
Box::new(source.cast::<Range<T>>().map(|x| x.into_dynamic()))
@@ -25,6 +23,10 @@ where
);
}
fn get_range<T: Variant + Clone>(from: T, to: T) -> FuncReturn<Range<T>> {
Ok(from..to)
}
// Register range function with step
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq)]
struct StepRange<T>(T, T, T)
@@ -50,13 +52,13 @@ where
}
}
fn reg_step<T>(lib: &mut PackageStore)
fn reg_step<T>(lib: &mut Module)
where
for<'a> &'a T: Add<&'a T, Output = T>,
T: Variant + Clone + PartialOrd,
StepRange<T>: Iterator<Item = T>,
{
lib.type_iterators.insert(
lib.set_iterator(
TypeId::of::<StepRange<T>>(),
Box::new(|source| {
Box::new(source.cast::<StepRange<T>>().map(|x| x.into_dynamic()))
@@ -65,22 +67,26 @@ where
);
}
def_package!(crate:BasicIteratorPackage:"Basic range iterators.", lib, {
fn get_range<T>(from: T, to: T) -> Range<T> {
from..to
}
fn get_step_range<T>(from: T, to: T, step: T) -> FuncReturn<StepRange<T>>
where
for<'a> &'a T: Add<&'a T, Output = T>,
T: Variant + Clone + PartialOrd,
{
Ok(StepRange::<T>(from, to, step))
}
def_package!(crate:BasicIteratorPackage:"Basic range iterators.", lib, {
reg_range::<INT>(lib);
reg_binary(lib, "range", get_range::<INT>, map);
lib.set_fn_2("range", get_range::<INT>);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
macro_rules! reg_range {
($self:expr, $x:expr, $( $y:ty ),*) => (
($lib:expr, $x:expr, $( $y:ty ),*) => (
$(
reg_range::<$y>($self);
reg_binary($self, $x, get_range::<$y>, map);
reg_range::<$y>($lib);
$lib.set_fn_2($x, get_range::<$y>);
)*
)
}
@@ -89,16 +95,16 @@ def_package!(crate:BasicIteratorPackage:"Basic range iterators.", lib, {
}
reg_step::<INT>(lib);
reg_trinary(lib, "range", StepRange::<INT>, map);
lib.set_fn_3("range", get_step_range::<INT>);
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
macro_rules! reg_step {
($self:expr, $x:expr, $( $y:ty ),*) => (
($lib:expr, $x:expr, $( $y:ty ),*) => (
$(
reg_step::<$y>($self);
reg_trinary($self, $x, StepRange::<$y>, map);
reg_step::<$y>($lib);
$lib.set_fn_3($x, get_step_range::<$y>);
)*
)
}

View File

@@ -1,44 +1,44 @@
use super::{reg_binary, reg_binary_mut, reg_unary};
use crate::def_package;
use crate::fn_register::map_dynamic as map;
use crate::module::FuncReturn;
use crate::parser::INT;
use crate::stdlib::string::String;
// Comparison operators
pub fn lt<T: PartialOrd>(x: T, y: T) -> bool {
x < y
pub fn lt<T: PartialOrd>(x: T, y: T) -> FuncReturn<bool> {
Ok(x < y)
}
pub fn lte<T: PartialOrd>(x: T, y: T) -> bool {
x <= y
pub fn lte<T: PartialOrd>(x: T, y: T) -> FuncReturn<bool> {
Ok(x <= y)
}
pub fn gt<T: PartialOrd>(x: T, y: T) -> bool {
x > y
pub fn gt<T: PartialOrd>(x: T, y: T) -> FuncReturn<bool> {
Ok(x > y)
}
pub fn gte<T: PartialOrd>(x: T, y: T) -> bool {
x >= y
pub fn gte<T: PartialOrd>(x: T, y: T) -> FuncReturn<bool> {
Ok(x >= y)
}
pub fn eq<T: PartialEq>(x: T, y: T) -> bool {
x == y
pub fn eq<T: PartialEq>(x: T, y: T) -> FuncReturn<bool> {
Ok(x == y)
}
pub fn ne<T: PartialEq>(x: T, y: T) -> bool {
x != y
pub fn ne<T: PartialEq>(x: T, y: T) -> FuncReturn<bool> {
Ok(x != y)
}
// Logic operators
fn and(x: bool, y: bool) -> bool {
x && y
fn and(x: bool, y: bool) -> FuncReturn<bool> {
Ok(x && y)
}
fn or(x: bool, y: bool) -> bool {
x || y
fn or(x: bool, y: bool) -> FuncReturn<bool> {
Ok(x || y)
}
fn not(x: bool) -> bool {
!x
fn not(x: bool) -> FuncReturn<bool> {
Ok(!x)
}
macro_rules! reg_op { ($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$(reg_binary($lib, $op, $func::<$par>, map);)* };
macro_rules! reg_op {
($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$( $lib.set_fn_2($op, $func::<$par>); )*
};
}
def_package!(crate:LogicPackage:"Logical operators.", lib, {
@@ -50,14 +50,12 @@ def_package!(crate:LogicPackage:"Logical operators.", lib, {
reg_op!(lib, "!=", ne, INT, char, bool, ());
// Special versions for strings - at least avoid copying the first string
// use super::utils::reg_test;
// reg_test(lib, "<", |x: &mut String, y: String| *x < y, |v| v, map);
reg_binary_mut(lib, "<", |x: &mut String, y: String| *x < y, map);
reg_binary_mut(lib, "<=", |x: &mut String, y: String| *x <= y, map);
reg_binary_mut(lib, ">", |x: &mut String, y: String| *x > y, map);
reg_binary_mut(lib, ">=", |x: &mut String, y: String| *x >= y, map);
reg_binary_mut(lib, "==", |x: &mut String, y: String| *x == y, map);
reg_binary_mut(lib, "!=", |x: &mut String, y: String| *x != y, map);
lib.set_fn_2_mut("<", |x: &mut String, y: String| Ok(*x < y));
lib.set_fn_2_mut("<=", |x: &mut String, y: String| Ok(*x <= y));
lib.set_fn_2_mut(">", |x: &mut String, y: String| Ok(*x > y));
lib.set_fn_2_mut(">=", |x: &mut String, y: String| Ok(*x >= y));
lib.set_fn_2_mut("==", |x: &mut String, y: String| Ok(*x == y));
lib.set_fn_2_mut("!=", |x: &mut String, y: String| Ok(*x != y));
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
@@ -85,7 +83,7 @@ def_package!(crate:LogicPackage:"Logical operators.", lib, {
//reg_op!(lib, "||", or, bool);
//reg_op!(lib, "&&", and, bool);
reg_binary(lib, "|", or, map);
reg_binary(lib, "&", and, map);
reg_unary(lib, "!", not, map);
lib.set_fn_2("|", or);
lib.set_fn_2("&", and);
lib.set_fn_1("!", not);
});

View File

@@ -1,11 +1,9 @@
#![cfg(not(feature = "no_object"))]
use super::{reg_binary, reg_binary_mut, reg_unary_mut};
use crate::any::Dynamic;
use crate::def_package;
use crate::engine::Map;
use crate::fn_register::map_dynamic as map;
use crate::module::FuncReturn;
use crate::parser::INT;
use crate::stdlib::{
@@ -13,55 +11,51 @@ use crate::stdlib::{
vec::Vec,
};
fn map_get_keys(map: &mut Map) -> Vec<Dynamic> {
map.iter().map(|(k, _)| k.to_string().into()).collect()
fn map_get_keys(map: &mut Map) -> FuncReturn<Vec<Dynamic>> {
Ok(map.iter().map(|(k, _)| k.to_string().into()).collect())
}
fn map_get_values(map: &mut Map) -> Vec<Dynamic> {
map.iter().map(|(_, v)| v.clone()).collect()
fn map_get_values(map: &mut Map) -> FuncReturn<Vec<Dynamic>> {
Ok(map.iter().map(|(_, v)| v.clone()).collect())
}
#[cfg(not(feature = "no_object"))]
def_package!(crate:BasicMapPackage:"Basic object map utilities.", lib, {
reg_binary_mut(
lib,
lib.set_fn_2_mut(
"has",
|map: &mut Map, prop: String| map.contains_key(&prop),
map,
|map: &mut Map, prop: String| Ok(map.contains_key(&prop)),
);
reg_unary_mut(lib, "len", |map: &mut Map| map.len() as INT, map);
reg_unary_mut(lib, "clear", |map: &mut Map| map.clear(), map);
reg_binary_mut(
lib,
lib.set_fn_1_mut("len", |map: &mut Map| Ok(map.len() as INT));
lib.set_fn_1_mut("clear", |map: &mut Map| {
map.clear();
Ok(())
});
lib.set_fn_2_mut(
"remove",
|x: &mut Map, name: String| x.remove(&name).unwrap_or_else(|| ().into()),
map,
|x: &mut Map, name: String| Ok(x.remove(&name).unwrap_or_else(|| ().into())),
);
reg_binary_mut(
lib,
lib.set_fn_2_mut(
"mixin",
|map1: &mut Map, map2: Map| {
map2.into_iter().for_each(|(key, value)| {
map1.insert(key, value);
});
Ok(())
},
map,
);
reg_binary(
lib,
lib.set_fn_2(
"+",
|mut map1: Map, map2: Map| {
map2.into_iter().for_each(|(key, value)| {
map1.insert(key, value);
});
map1
Ok(map1)
},
map,
);
// Register map access functions
#[cfg(not(feature = "no_index"))]
reg_unary_mut(lib, "keys", map_get_keys, map);
lib.set_fn_1_mut("keys", map_get_keys);
#[cfg(not(feature = "no_index"))]
reg_unary_mut(lib, "values", map_get_values, map);
lib.set_fn_1_mut("values", map_get_values);
});

View File

@@ -1,7 +1,5 @@
use super::{reg_binary, reg_unary};
use crate::def_package;
use crate::fn_register::{map_dynamic as map, map_result as result};
use crate::module::FuncReturn;
use crate::parser::INT;
use crate::result::EvalAltResult;
use crate::token::Position;
@@ -20,78 +18,77 @@ def_package!(crate:BasicMathPackage:"Basic mathematic functions.", lib, {
#[cfg(not(feature = "no_float"))]
{
// Advanced math functions
reg_unary(lib, "sin", |x: FLOAT| x.to_radians().sin(), map);
reg_unary(lib, "cos", |x: FLOAT| x.to_radians().cos(), map);
reg_unary(lib, "tan", |x: FLOAT| x.to_radians().tan(), map);
reg_unary(lib, "sinh", |x: FLOAT| x.to_radians().sinh(), map);
reg_unary(lib, "cosh", |x: FLOAT| x.to_radians().cosh(), map);
reg_unary(lib, "tanh", |x: FLOAT| x.to_radians().tanh(), map);
reg_unary(lib, "asin", |x: FLOAT| x.asin().to_degrees(), map);
reg_unary(lib, "acos", |x: FLOAT| x.acos().to_degrees(), map);
reg_unary(lib, "atan", |x: FLOAT| x.atan().to_degrees(), map);
reg_unary(lib, "asinh", |x: FLOAT| x.asinh().to_degrees(), map);
reg_unary(lib, "acosh", |x: FLOAT| x.acosh().to_degrees(), map);
reg_unary(lib, "atanh", |x: FLOAT| x.atanh().to_degrees(), map);
reg_unary(lib, "sqrt", |x: FLOAT| x.sqrt(), map);
reg_unary(lib, "exp", |x: FLOAT| x.exp(), map);
reg_unary(lib, "ln", |x: FLOAT| x.ln(), map);
reg_binary(lib, "log", |x: FLOAT, base: FLOAT| x.log(base), map);
reg_unary(lib, "log10", |x: FLOAT| x.log10(), map);
reg_unary(lib, "floor", |x: FLOAT| x.floor(), map);
reg_unary(lib, "ceiling", |x: FLOAT| x.ceil(), map);
reg_unary(lib, "round", |x: FLOAT| x.ceil(), map);
reg_unary(lib, "int", |x: FLOAT| x.trunc(), map);
reg_unary(lib, "fraction", |x: FLOAT| x.fract(), map);
reg_unary(lib, "is_nan", |x: FLOAT| x.is_nan(), map);
reg_unary(lib, "is_finite", |x: FLOAT| x.is_finite(), map);
reg_unary(lib, "is_infinite", |x: FLOAT| x.is_infinite(), map);
lib.set_fn_1("sin", |x: FLOAT| Ok(x.to_radians().sin()));
lib.set_fn_1("cos", |x: FLOAT| Ok(x.to_radians().cos()));
lib.set_fn_1("tan", |x: FLOAT| Ok(x.to_radians().tan()));
lib.set_fn_1("sinh", |x: FLOAT| Ok(x.to_radians().sinh()));
lib.set_fn_1("cosh", |x: FLOAT| Ok(x.to_radians().cosh()));
lib.set_fn_1("tanh", |x: FLOAT| Ok(x.to_radians().tanh()));
lib.set_fn_1("asin", |x: FLOAT| Ok(x.asin().to_degrees()));
lib.set_fn_1("acos", |x: FLOAT| Ok(x.acos().to_degrees()));
lib.set_fn_1("atan", |x: FLOAT| Ok(x.atan().to_degrees()));
lib.set_fn_1("asinh", |x: FLOAT| Ok(x.asinh().to_degrees()));
lib.set_fn_1("acosh", |x: FLOAT| Ok(x.acosh().to_degrees()));
lib.set_fn_1("atanh", |x: FLOAT| Ok(x.atanh().to_degrees()));
lib.set_fn_1("sqrt", |x: FLOAT| Ok(x.sqrt()));
lib.set_fn_1("exp", |x: FLOAT| Ok(x.exp()));
lib.set_fn_1("ln", |x: FLOAT| Ok(x.ln()));
lib.set_fn_2("log", |x: FLOAT, base: FLOAT| Ok(x.log(base)));
lib.set_fn_1("log10", |x: FLOAT| Ok(x.log10()));
lib.set_fn_1("floor", |x: FLOAT| Ok(x.floor()));
lib.set_fn_1("ceiling", |x: FLOAT| Ok(x.ceil()));
lib.set_fn_1("round", |x: FLOAT| Ok(x.ceil()));
lib.set_fn_1("int", |x: FLOAT| Ok(x.trunc()));
lib.set_fn_1("fraction", |x: FLOAT| Ok(x.fract()));
lib.set_fn_1("is_nan", |x: FLOAT| Ok(x.is_nan()));
lib.set_fn_1("is_finite", |x: FLOAT| Ok(x.is_finite()));
lib.set_fn_1("is_infinite", |x: FLOAT| Ok(x.is_infinite()));
// Register conversion functions
reg_unary(lib, "to_float", |x: INT| x as FLOAT, map);
reg_unary(lib, "to_float", |x: f32| x as FLOAT, map);
lib.set_fn_1("to_float", |x: INT| Ok(x as FLOAT));
lib.set_fn_1("to_float", |x: f32| Ok(x as FLOAT));
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_unary(lib, "to_float", |x: i8| x as FLOAT, map);
reg_unary(lib, "to_float", |x: u8| x as FLOAT, map);
reg_unary(lib, "to_float", |x: i16| x as FLOAT, map);
reg_unary(lib, "to_float", |x: u16| x as FLOAT, map);
reg_unary(lib, "to_float", |x: i32| x as FLOAT, map);
reg_unary(lib, "to_float", |x: u32| x as FLOAT, map);
reg_unary(lib, "to_float", |x: i64| x as FLOAT, map);
reg_unary(lib, "to_float", |x: u64| x as FLOAT, map);
reg_unary(lib, "to_float", |x: i128| x as FLOAT, map);
reg_unary(lib, "to_float", |x: u128| x as FLOAT, map);
lib.set_fn_1("to_float", |x: i8| Ok(x as FLOAT));
lib.set_fn_1("to_float", |x: u8| Ok(x as FLOAT));
lib.set_fn_1("to_float", |x: i16| Ok(x as FLOAT));
lib.set_fn_1("to_float", |x: u16| Ok(x as FLOAT));
lib.set_fn_1("to_float", |x: i32| Ok(x as FLOAT));
lib.set_fn_1("to_float", |x: u32| Ok(x as FLOAT));
lib.set_fn_1("to_float", |x: i64| Ok(x as FLOAT));
lib.set_fn_1("to_float", |x: u64| Ok(x as FLOAT));
lib.set_fn_1("to_float", |x: i128| Ok(x as FLOAT));
lib.set_fn_1("to_float", |x: u128| Ok(x as FLOAT));
}
}
reg_unary(lib, "to_int", |ch: char| ch as INT, map);
lib.set_fn_1("to_int", |ch: char| Ok(ch as INT));
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
{
reg_unary(lib, "to_int", |x: i8| x as INT, map);
reg_unary(lib, "to_int", |x: u8| x as INT, map);
reg_unary(lib, "to_int", |x: i16| x as INT, map);
reg_unary(lib, "to_int", |x: u16| x as INT, map);
lib.set_fn_1("to_int", |x: i8| Ok(x as INT));
lib.set_fn_1("to_int", |x: u8| Ok(x as INT));
lib.set_fn_1("to_int", |x: i16| Ok(x as INT));
lib.set_fn_1("to_int", |x: u16| Ok(x as INT));
}
#[cfg(not(feature = "only_i32"))]
{
reg_unary(lib, "to_int", |x: i32| x as INT, map);
reg_unary(lib, "to_int", |x: u64| x as INT, map);
lib.set_fn_1("to_int", |x: i32| Ok(x as INT));
lib.set_fn_1("to_int", |x: u64| Ok(x as INT));
#[cfg(feature = "only_i64")]
reg_unary(lib, "to_int", |x: u32| x as INT, map);
lib.set_fn_1("to_int", |x: u32| Ok(x as INT));
}
#[cfg(not(feature = "no_float"))]
{
#[cfg(not(feature = "unchecked"))]
{
reg_unary(
lib,
lib.set_fn_1(
"to_int",
|x: f32| {
if x > (MAX_INT as f32) {
@@ -103,10 +100,8 @@ def_package!(crate:BasicMathPackage:"Basic mathematic functions.", lib, {
Ok(x.trunc() as INT)
},
result,
);
reg_unary(
lib,
lib.set_fn_1(
"to_int",
|x: FLOAT| {
if x > (MAX_INT as FLOAT) {
@@ -118,14 +113,13 @@ def_package!(crate:BasicMathPackage:"Basic mathematic functions.", lib, {
Ok(x.trunc() as INT)
},
result,
);
}
#[cfg(feature = "unchecked")]
{
reg_unary(lib, "to_int", |x: f32| x as INT, map);
reg_unary(lib, "to_int", |x: f64| x as INT, map);
lib.set_fn_1("to_int", |x: f32| Ok(x as INT));
lib.set_fn_1("to_int", |x: f64| Ok(x as INT));
}
}
});

View File

@@ -1,6 +1,7 @@
//! This module contains all built-in _packages_ available to Rhai, plus facilities to define custom packages.
use crate::fn_native::{IteratorFn, NativeCallable};
use crate::fn_native::{NativeCallable, SharedIteratorFunction};
use crate::module::Module;
use crate::stdlib::{any::TypeId, boxed::Box, collections::HashMap, rc::Rc, sync::Arc, vec::Vec};
@@ -15,7 +16,6 @@ mod pkg_std;
mod string_basic;
mod string_more;
mod time_basic;
mod utils;
pub use arithmetic::ArithmeticPackage;
#[cfg(not(feature = "no_index"))]
@@ -32,67 +32,22 @@ pub use string_more::MoreStringPackage;
#[cfg(not(feature = "no_std"))]
pub use time_basic::BasicTimePackage;
pub use utils::*;
const NUM_NATIVE_FUNCTIONS: usize = 512;
/// Trait that all packages must implement.
pub trait Package {
/// Register all the functions in a package into a store.
fn init(lib: &mut PackageStore);
fn init(lib: &mut Module);
/// Retrieve the generic package library from this package.
fn get(&self) -> PackageLibrary;
}
/// Type to store all functions in the package.
pub struct PackageStore {
/// All functions, keyed by a hash created from the function name and parameter types.
pub functions: HashMap<u64, Box<dyn NativeCallable>>,
/// All iterator functions, keyed by the type producing the iterator.
pub type_iterators: HashMap<TypeId, Box<IteratorFn>>,
}
impl PackageStore {
/// Create a new `PackageStore`.
pub fn new() -> Self {
Default::default()
}
/// Does the specified function hash key exist in the `PackageStore`?
pub fn contains_function(&self, hash: u64) -> bool {
self.functions.contains_key(&hash)
}
/// Get specified function via its hash key.
pub fn get_function(&self, hash: u64) -> Option<&Box<dyn NativeCallable>> {
self.functions.get(&hash)
}
/// Does the specified TypeId iterator exist in the `PackageStore`?
pub fn contains_iterator(&self, id: TypeId) -> bool {
self.type_iterators.contains_key(&id)
}
/// Get the specified TypeId iterator.
pub fn get_iterator(&self, id: TypeId) -> Option<&Box<IteratorFn>> {
self.type_iterators.get(&id)
}
}
impl Default for PackageStore {
fn default() -> Self {
Self {
functions: HashMap::with_capacity(NUM_NATIVE_FUNCTIONS),
type_iterators: HashMap::with_capacity(4),
}
}
}
/// Type which `Rc`-wraps a `PackageStore` to facilitate sharing library instances.
/// Type which `Rc`-wraps a `Module` to facilitate sharing library instances.
#[cfg(not(feature = "sync"))]
pub type PackageLibrary = Rc<PackageStore>;
pub type PackageLibrary = Rc<Module>;
/// Type which `Arc`-wraps a `PackageStore` to facilitate sharing library instances.
/// Type which `Arc`-wraps a `Module` to facilitate sharing library instances.
#[cfg(feature = "sync")]
pub type PackageLibrary = Arc<PackageStore>;
pub type PackageLibrary = Arc<Module>;
/// Type containing a collection of `PackageLibrary` instances.
/// All function and type iterator keys in the loaded packages are indexed for fast access.
@@ -110,13 +65,13 @@ impl PackagesCollection {
}
/// Does the specified function hash key exist in the `PackagesCollection`?
pub fn contains_function(&self, hash: u64) -> bool {
self.packages.iter().any(|p| p.contains_function(hash))
self.packages.iter().any(|p| p.contains_fn(hash))
}
/// Get specified function via its hash key.
pub fn get_function(&self, hash: u64) -> Option<&Box<dyn NativeCallable>> {
self.packages
.iter()
.map(|p| p.get_function(hash))
.map(|p| p.get_fn(hash))
.find(|f| f.is_some())
.flatten()
}
@@ -125,7 +80,7 @@ impl PackagesCollection {
self.packages.iter().any(|p| p.contains_iterator(id))
}
/// Get the specified TypeId iterator.
pub fn get_iterator(&self, id: TypeId) -> Option<&Box<IteratorFn>> {
pub fn get_iterator(&self, id: TypeId) -> Option<&SharedIteratorFunction> {
self.packages
.iter()
.map(|p| p.get_iterator(id))
@@ -133,3 +88,51 @@ impl PackagesCollection {
.flatten()
}
}
/// This macro makes it easy to define a _package_ (which is basically a shared module)
/// and register functions into it.
///
/// Functions can be added to the package using the standard module methods such as
/// `set_fn_2`, `set_fn_3_mut`, `set_fn_0` etc.
///
/// # Examples
///
/// ```
/// use rhai::{Dynamic, EvalAltResult};
/// use rhai::def_package;
///
/// fn add(x: i64, y: i64) -> Result<i64, Box<EvalAltResult>> { Ok(x + y) }
///
/// def_package!(rhai:MyPackage:"My super-duper package", lib,
/// {
/// // Load a binary function with all value parameters.
/// lib.set_fn_2("my_add", add);
/// });
/// ```
///
/// The above defines a package named 'MyPackage' with a single function named 'my_add'.
#[macro_export]
macro_rules! def_package {
($root:ident : $package:ident : $comment:expr , $lib:ident , $block:stmt) => {
#[doc=$comment]
pub struct $package($root::packages::PackageLibrary);
impl $root::packages::Package for $package {
fn get(&self) -> $root::packages::PackageLibrary {
self.0.clone()
}
fn init($lib: &mut $root::Module) {
$block
}
}
impl $package {
pub fn new() -> Self {
let mut module = $root::Module::new();
<Self as $root::packages::Package>::init(&mut module);
Self(module.into())
}
}
};
}

View File

@@ -1,8 +1,6 @@
use super::{reg_binary, reg_binary_mut, reg_none, reg_unary, reg_unary_mut};
use crate::def_package;
use crate::engine::{FUNC_TO_STRING, KEYWORD_DEBUG, KEYWORD_PRINT};
use crate::fn_register::map_dynamic as map;
use crate::module::FuncReturn;
use crate::parser::INT;
#[cfg(not(feature = "no_index"))]
@@ -18,31 +16,33 @@ use crate::stdlib::{
};
// Register print and debug
fn to_debug<T: Debug>(x: &mut T) -> String {
format!("{:?}", x)
fn to_debug<T: Debug>(x: &mut T) -> FuncReturn<String> {
Ok(format!("{:?}", x))
}
fn to_string<T: Display>(x: &mut T) -> String {
format!("{}", x)
fn to_string<T: Display>(x: &mut T) -> FuncReturn<String> {
Ok(format!("{}", x))
}
#[cfg(not(feature = "no_object"))]
fn format_map(x: &mut Map) -> String {
format!("#{:?}", x)
fn format_map(x: &mut Map) -> FuncReturn<String> {
Ok(format!("#{:?}", x))
}
macro_rules! reg_op { ($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$(reg_unary_mut($lib, $op, $func::<$par>, map);)* };
macro_rules! reg_op {
($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$( $lib.set_fn_1_mut($op, $func::<$par>); )*
};
}
def_package!(crate:BasicStringPackage:"Basic string utilities, including printing.", lib, {
reg_op!(lib, KEYWORD_PRINT, to_string, INT, bool, char);
reg_op!(lib, FUNC_TO_STRING, to_string, INT, bool, char);
reg_none(lib, KEYWORD_PRINT, || "".to_string(), map);
reg_unary(lib, KEYWORD_PRINT, |_: ()| "".to_string(), map);
reg_unary(lib, FUNC_TO_STRING, |_: ()| "".to_string(), map);
lib.set_fn_0(KEYWORD_PRINT, || Ok("".to_string()));
lib.set_fn_1(KEYWORD_PRINT, |_: ()| Ok("".to_string()));
lib.set_fn_1(FUNC_TO_STRING, |_: ()| Ok("".to_string()));
reg_unary_mut(lib, KEYWORD_PRINT, |s: &mut String| s.clone(), map);
reg_unary_mut(lib, FUNC_TO_STRING, |s: &mut String| s.clone(), map);
lib.set_fn_1_mut(KEYWORD_PRINT, |s: &mut String| Ok(s.clone()));
lib.set_fn_1_mut(FUNC_TO_STRING, |s: &mut String| Ok(s.clone()));
reg_op!(lib, KEYWORD_DEBUG, to_debug, INT, bool, (), char, String);
@@ -73,34 +73,34 @@ def_package!(crate:BasicStringPackage:"Basic string utilities, including printin
#[cfg(not(feature = "no_object"))]
{
reg_unary_mut(lib, KEYWORD_PRINT, format_map, map);
reg_unary_mut(lib, FUNC_TO_STRING, format_map, map);
reg_unary_mut(lib, KEYWORD_DEBUG, format_map, map);
lib.set_fn_1_mut(KEYWORD_PRINT, format_map);
lib.set_fn_1_mut(FUNC_TO_STRING, format_map);
lib.set_fn_1_mut(KEYWORD_DEBUG, format_map);
}
reg_binary(
lib,
lib.set_fn_2(
"+",
|mut s: String, ch: char| {
s.push(ch);
s
Ok(s)
},
map,
);
reg_binary(
lib,
lib.set_fn_2(
"+",
|mut s: String, s2: String| {
s.push_str(&s2);
s
Ok(s)
},
map,
);
reg_binary_mut(lib, "append", |s: &mut String, ch: char| s.push(ch), map);
reg_binary_mut(
lib,
lib.set_fn_2_mut("append", |s: &mut String, ch: char| {
s.push(ch);
Ok(())
});
lib.set_fn_2_mut(
"append",
|s: &mut String, s2: String| s.push_str(&s2),
map,
|s: &mut String, s2: String| {
s.push_str(&s2);
Ok(())
}
);
});

View File

@@ -1,7 +1,5 @@
use super::{reg_binary, reg_binary_mut, reg_trinary_mut, reg_unary_mut};
use crate::def_package;
use crate::fn_register::map_dynamic as map;
use crate::module::FuncReturn;
use crate::parser::INT;
#[cfg(not(feature = "no_index"))]
@@ -14,19 +12,19 @@ use crate::stdlib::{
vec::Vec,
};
fn prepend<T: Display>(x: T, y: String) -> String {
format!("{}{}", x, y)
fn prepend<T: Display>(x: T, y: String) -> FuncReturn<String> {
Ok(format!("{}{}", x, y))
}
fn append<T: Display>(x: String, y: T) -> String {
format!("{}{}", x, y)
fn append<T: Display>(x: String, y: T) -> FuncReturn<String> {
Ok(format!("{}{}", x, y))
}
fn sub_string(s: &mut String, start: INT, len: INT) -> String {
fn sub_string(s: &mut String, start: INT, len: INT) -> FuncReturn<String> {
let offset = if s.is_empty() || len <= 0 {
return "".to_string();
return Ok("".to_string());
} else if start < 0 {
0
} else if (start as usize) >= s.chars().count() {
return "".to_string();
return Ok("".to_string());
} else {
start as usize
};
@@ -39,17 +37,17 @@ fn sub_string(s: &mut String, start: INT, len: INT) -> String {
len as usize
};
chars[offset..][..len].into_iter().collect()
Ok(chars[offset..][..len].into_iter().collect())
}
fn crop_string(s: &mut String, start: INT, len: INT) {
fn crop_string(s: &mut String, start: INT, len: INT) -> FuncReturn<()> {
let offset = if s.is_empty() || len <= 0 {
s.clear();
return;
return Ok(());
} else if start < 0 {
0
} else if (start as usize) >= s.chars().count() {
s.clear();
return;
return Ok(());
} else {
start as usize
};
@@ -67,18 +65,22 @@ fn crop_string(s: &mut String, start: INT, len: INT) {
chars[offset..][..len]
.into_iter()
.for_each(|&ch| s.push(ch));
Ok(())
}
macro_rules! reg_op { ($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$(reg_binary($lib, $op, $func::<$par>, map);)* };
macro_rules! reg_op {
($lib:expr, $op:expr, $func:ident, $($par:ty),*) => {
$( $lib.set_fn_2($op, $func::<$par>); )*
};
}
def_package!(crate:MoreStringPackage:"Additional string utilities, including string building.", lib, {
reg_op!(lib, "+", append, INT, bool, char);
reg_binary_mut(lib, "+", |x: &mut String, _: ()| x.clone(), map);
lib.set_fn_2_mut( "+", |x: &mut String, _: ()| Ok(x.clone()));
reg_op!(lib, "+", prepend, INT, bool, char);
reg_binary(lib, "+", |_: (), y: String| y, map);
lib.set_fn_2("+", |_: (), y: String| Ok(y));
#[cfg(not(feature = "only_i32"))]
#[cfg(not(feature = "only_i64"))]
@@ -95,105 +97,95 @@ def_package!(crate:MoreStringPackage:"Additional string utilities, including str
#[cfg(not(feature = "no_index"))]
{
reg_binary(lib, "+", |x: String, y: Array| format!("{}{:?}", x, y), map);
reg_binary(lib, "+", |x: Array, y: String| format!("{:?}{}", x, y), map);
lib.set_fn_2("+", |x: String, y: Array| Ok(format!("{}{:?}", x, y)));
lib.set_fn_2("+", |x: Array, y: String| Ok(format!("{:?}{}", x, y)));
}
reg_unary_mut(lib, "len", |s: &mut String| s.chars().count() as INT, map);
reg_binary_mut(
lib,
lib.set_fn_1_mut("len", |s: &mut String| Ok(s.chars().count() as INT));
lib.set_fn_2_mut(
"contains",
|s: &mut String, ch: char| s.contains(ch),
map,
|s: &mut String, ch: char| Ok(s.contains(ch)),
);
reg_binary_mut(
lib,
lib.set_fn_2_mut(
"contains",
|s: &mut String, find: String| s.contains(&find),
map,
|s: &mut String, find: String| Ok(s.contains(&find)),
);
reg_trinary_mut(
lib,
lib.set_fn_3_mut(
"index_of",
|s: &mut String, ch: char, start: INT| {
let start = if start < 0 {
0
} else if (start as usize) >= s.chars().count() {
return -1 as INT;
return Ok(-1 as INT);
} else {
s.chars().take(start as usize).collect::<String>().len()
};
s[start..]
Ok(s[start..]
.find(ch)
.map(|index| s[0..start + index].chars().count() as INT)
.unwrap_or(-1 as INT)
.unwrap_or(-1 as INT))
},
map,
);
reg_binary_mut(
lib,
lib.set_fn_2_mut(
"index_of",
|s: &mut String, ch: char| {
s.find(ch)
Ok(s.find(ch)
.map(|index| s[0..index].chars().count() as INT)
.unwrap_or(-1 as INT)
.unwrap_or(-1 as INT))
},
map,
);
reg_trinary_mut(
lib,
lib.set_fn_3_mut(
"index_of",
|s: &mut String, find: String, start: INT| {
let start = if start < 0 {
0
} else if (start as usize) >= s.chars().count() {
return -1 as INT;
return Ok(-1 as INT);
} else {
s.chars().take(start as usize).collect::<String>().len()
};
s[start..]
Ok(s[start..]
.find(&find)
.map(|index| s[0..start + index].chars().count() as INT)
.unwrap_or(-1 as INT)
.unwrap_or(-1 as INT))
},
map,
);
reg_binary_mut(
lib,
lib.set_fn_2_mut(
"index_of",
|s: &mut String, find: String| {
s.find(&find)
Ok(s.find(&find)
.map(|index| s[0..index].chars().count() as INT)
.unwrap_or(-1 as INT)
.unwrap_or(-1 as INT))
},
map,
);
reg_unary_mut(lib, "clear", |s: &mut String| s.clear(), map);
reg_binary_mut(lib, "append", |s: &mut String, ch: char| s.push(ch), map);
reg_binary_mut(
lib,
lib.set_fn_1_mut("clear", |s: &mut String| {
s.clear();
Ok(())
});
lib.set_fn_2_mut( "append", |s: &mut String, ch: char| {
s.push(ch);
Ok(())
});
lib.set_fn_2_mut(
"append",
|s: &mut String, add: String| s.push_str(&add),
map,
|s: &mut String, add: String| {
s.push_str(&add);
Ok(())
}
);
reg_trinary_mut(lib, "sub_string", sub_string, map);
reg_binary_mut(
lib,
lib.set_fn_3_mut( "sub_string", sub_string);
lib.set_fn_2_mut(
"sub_string",
|s: &mut String, start: INT| sub_string(s, start, s.len() as INT),
map,
);
reg_trinary_mut(lib, "crop", crop_string, map);
reg_binary_mut(
lib,
lib.set_fn_3_mut( "crop", crop_string);
lib.set_fn_2_mut(
"crop",
|s: &mut String, start: INT| crop_string(s, start, s.len() as INT),
map,
);
reg_binary_mut(
lib,
lib.set_fn_2_mut(
"truncate",
|s: &mut String, len: INT| {
if len >= 0 {
@@ -203,61 +195,55 @@ def_package!(crate:MoreStringPackage:"Additional string utilities, including str
} else {
s.clear();
}
Ok(())
},
map,
);
reg_trinary_mut(
lib,
lib.set_fn_3_mut(
"pad",
|s: &mut String, len: INT, ch: char| {
for _ in 0..s.chars().count() - len as usize {
s.push(ch);
}
Ok(())
},
map,
);
reg_trinary_mut(
lib,
lib.set_fn_3_mut(
"replace",
|s: &mut String, find: String, sub: String| {
let new_str = s.replace(&find, &sub);
s.clear();
s.push_str(&new_str);
Ok(())
},
map,
);
reg_trinary_mut(
lib,
lib.set_fn_3_mut(
"replace",
|s: &mut String, find: String, sub: char| {
let new_str = s.replace(&find, &sub.to_string());
s.clear();
s.push_str(&new_str);
Ok(())
},
map,
);
reg_trinary_mut(
lib,
lib.set_fn_3_mut(
"replace",
|s: &mut String, find: char, sub: String| {
let new_str = s.replace(&find.to_string(), &sub);
s.clear();
s.push_str(&new_str);
Ok(())
},
map,
);
reg_trinary_mut(
lib,
lib.set_fn_3_mut(
"replace",
|s: &mut String, find: char, sub: char| {
let new_str = s.replace(&find.to_string(), &sub.to_string());
s.clear();
s.push_str(&new_str);
Ok(())
},
map,
);
reg_unary_mut(
lib,
lib.set_fn_1_mut(
"trim",
|s: &mut String| {
let trimmed = s.trim();
@@ -265,7 +251,7 @@ def_package!(crate:MoreStringPackage:"Additional string utilities, including str
if trimmed.len() < s.len() {
*s = trimmed.to_string();
}
Ok(())
},
map,
);
});

View File

@@ -1,9 +1,8 @@
use super::logic::{eq, gt, gte, lt, lte, ne};
use super::math_basic::MAX_INT;
use super::{reg_binary, reg_none, reg_unary};
use crate::def_package;
use crate::fn_register::{map_dynamic as map, map_result as result};
use crate::module::FuncReturn;
use crate::parser::INT;
use crate::result::EvalAltResult;
use crate::token::Position;
@@ -14,10 +13,9 @@ use crate::stdlib::time::Instant;
#[cfg(not(feature = "no_std"))]
def_package!(crate:BasicTimePackage:"Basic timing utilities.", lib, {
// Register date/time functions
reg_none(lib, "timestamp", || Instant::now(), map);
lib.set_fn_0("timestamp", || Ok(Instant::now()));
reg_binary(
lib,
lib.set_fn_2(
"-",
|ts1: Instant, ts2: Instant| {
if ts2 > ts1 {
@@ -63,18 +61,16 @@ def_package!(crate:BasicTimePackage:"Basic timing utilities.", lib, {
}
}
},
result,
);
reg_binary(lib, "<", lt::<Instant>, map);
reg_binary(lib, "<=", lte::<Instant>, map);
reg_binary(lib, ">", gt::<Instant>, map);
reg_binary(lib, ">=", gte::<Instant>, map);
reg_binary(lib, "==", eq::<Instant>, map);
reg_binary(lib, "!=", ne::<Instant>, map);
lib.set_fn_2("<", lt::<Instant>);
lib.set_fn_2("<=", lte::<Instant>);
lib.set_fn_2(">", gt::<Instant>);
lib.set_fn_2(">=", gte::<Instant>);
lib.set_fn_2("==", eq::<Instant>);
lib.set_fn_2("!=", ne::<Instant>);
reg_unary(
lib,
lib.set_fn_1(
"elapsed",
|timestamp: Instant| {
#[cfg(not(feature = "no_float"))]
@@ -96,6 +92,5 @@ def_package!(crate:BasicTimePackage:"Basic timing utilities.", lib, {
return Ok(seconds as INT);
}
},
result,
);
});

View File

@@ -1,425 +0,0 @@
use super::PackageStore;
use crate::any::{Dynamic, Variant};
use crate::calc_fn_hash;
use crate::fn_native::{FnCallArgs, NativeFunction, NativeFunctionABI::*};
use crate::result::EvalAltResult;
use crate::token::Position;
use crate::stdlib::{
any::TypeId,
boxed::Box,
iter::empty,
mem,
string::{String, ToString},
};
/// This macro makes it easy to define a _package_ and register functions into it.
///
/// Functions can be added to the package using a number of helper functions under the `packages` module,
/// such as `reg_unary`, `reg_binary_mut`, `reg_trinary_mut` etc.
///
/// # Examples
///
/// ```
/// use rhai::Dynamic;
/// use rhai::def_package;
/// use rhai::packages::reg_binary;
///
/// fn add(x: i64, y: i64) -> i64 { x + y }
///
/// def_package!(rhai:MyPackage:"My super-duper package", lib,
/// {
/// reg_binary(lib, "my_add", add, |v, _| Ok(v.into()));
/// // ^^^^^^^^^^^^^^^^^^^
/// // map into Result<Dynamic, Box<EvalAltResult>>
/// });
/// ```
///
/// The above defines a package named 'MyPackage' with a single function named 'my_add'.
#[macro_export]
macro_rules! def_package {
($root:ident : $package:ident : $comment:expr , $lib:ident , $block:stmt) => {
#[doc=$comment]
pub struct $package($root::packages::PackageLibrary);
impl $root::packages::Package for $package {
fn get(&self) -> $root::packages::PackageLibrary {
self.0.clone()
}
fn init($lib: &mut $root::packages::PackageStore) {
$block
}
}
impl $package {
pub fn new() -> Self {
let mut pkg = $root::packages::PackageStore::new();
<Self as $root::packages::Package>::init(&mut pkg);
Self(pkg.into())
}
}
};
}
/// Add a function with no parameters to the package.
///
/// `map_result` is a function that maps the return type of the function to `Result<Dynamic, EvalAltResult>`.
///
/// # Examples
///
/// ```
/// use rhai::Dynamic;
/// use rhai::def_package;
/// use rhai::packages::reg_none;
///
/// fn get_answer() -> i64 { 42 }
///
/// def_package!(rhai:MyPackage:"My super-duper package", lib,
/// {
/// reg_none(lib, "my_answer", get_answer, |v, _| Ok(v.into()));
/// // ^^^^^^^^^^^^^^^^^^^
/// // map into Result<Dynamic, Box<EvalAltResult>>
/// });
/// ```
///
/// The above defines a package named 'MyPackage' with a single function named 'my_add_1'.
pub fn reg_none<R>(
lib: &mut PackageStore,
fn_name: &'static str,
#[cfg(not(feature = "sync"))] func: impl Fn() -> R + 'static,
#[cfg(feature = "sync")] func: impl Fn() -> R + Send + Sync + 'static,
#[cfg(not(feature = "sync"))] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ 'static,
#[cfg(feature = "sync")] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ Send
+ Sync
+ 'static,
) {
let hash_fn_native = calc_fn_hash(empty(), fn_name, ([] as [TypeId; 0]).iter().cloned());
let f = Box::new(move |_: &mut FnCallArgs, pos| {
let r = func();
map_result(r, pos)
});
lib.functions
.insert(hash_fn_native, Box::new(NativeFunction::new(f, Pure)));
}
/// Add a function with one parameter to the package.
///
/// `map_result` is a function that maps the return type of the function to `Result<Dynamic, EvalAltResult>`.
///
/// # Examples
///
/// ```
/// use rhai::Dynamic;
/// use rhai::def_package;
/// use rhai::packages::reg_unary;
///
/// fn add_1(x: i64) -> i64 { x + 1 }
///
/// def_package!(rhai:MyPackage:"My super-duper package", lib,
/// {
/// reg_unary(lib, "my_add_1", add_1, |v, _| Ok(v.into()));
/// // ^^^^^^^^^^^^^^^^^^^
/// // map into Result<Dynamic, Box<EvalAltResult>>
/// });
/// ```
///
/// The above defines a package named 'MyPackage' with a single function named 'my_add_1'.
pub fn reg_unary<T: Variant + Clone, R>(
lib: &mut PackageStore,
fn_name: &'static str,
#[cfg(not(feature = "sync"))] func: impl Fn(T) -> R + 'static,
#[cfg(feature = "sync")] func: impl Fn(T) -> R + Send + Sync + 'static,
#[cfg(not(feature = "sync"))] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ 'static,
#[cfg(feature = "sync")] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ Send
+ Sync
+ 'static,
) {
//println!("register {}({})", fn_name, crate::std::any::type_name::<T>());
let hash_fn_native = calc_fn_hash(empty(), fn_name, [TypeId::of::<T>()].iter().cloned());
let f = Box::new(move |args: &mut FnCallArgs, pos| {
let mut drain = args.iter_mut();
let x = mem::take(*drain.next().unwrap()).cast::<T>();
let r = func(x);
map_result(r, pos)
});
lib.functions
.insert(hash_fn_native, Box::new(NativeFunction::new(f, Pure)));
}
/// Add a function with one mutable reference parameter to the package.
///
/// `map_result` is a function that maps the return type of the function to `Result<Dynamic, EvalAltResult>`.
///
/// # Examples
///
/// ```
/// use rhai::{Dynamic, EvalAltResult};
/// use rhai::def_package;
/// use rhai::packages::reg_unary_mut;
///
/// fn inc(x: &mut i64) -> Result<Dynamic, Box<EvalAltResult>> {
/// if *x == 0 {
/// return Err("boo! zero cannot be incremented!".into())
/// }
/// *x += 1;
/// Ok(().into())
/// }
///
/// def_package!(rhai:MyPackage:"My super-duper package", lib,
/// {
/// reg_unary_mut(lib, "try_inc", inc, |r, _| r);
/// // ^^^^^^^^
/// // map into Result<Dynamic, Box<EvalAltResult>>
/// });
/// ```
///
/// The above defines a package named 'MyPackage' with a single fallible function named 'try_inc'
/// which takes a first argument of `&mut`, return a `Result<Dynamic, Box<EvalAltResult>>`.
pub fn reg_unary_mut<T: Variant + Clone, R>(
lib: &mut PackageStore,
fn_name: &'static str,
#[cfg(not(feature = "sync"))] func: impl Fn(&mut T) -> R + 'static,
#[cfg(feature = "sync")] func: impl Fn(&mut T) -> R + Send + Sync + 'static,
#[cfg(not(feature = "sync"))] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ 'static,
#[cfg(feature = "sync")] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ Send
+ Sync
+ 'static,
) {
//println!("register {}(&mut {})", fn_name, crate::std::any::type_name::<T>());
let hash_fn_native = calc_fn_hash(empty(), fn_name, [TypeId::of::<T>()].iter().cloned());
let f = Box::new(move |args: &mut FnCallArgs, pos| {
let mut drain = args.iter_mut();
let x: &mut T = drain.next().unwrap().downcast_mut().unwrap();
let r = func(x);
map_result(r, pos)
});
lib.functions
.insert(hash_fn_native, Box::new(NativeFunction::new(f, Method)));
}
/// Add a function with two parameters to the package.
///
/// `map_result` is a function that maps the return type of the function to `Result<Dynamic, EvalAltResult>`.
///
/// # Examples
///
/// ```
/// use rhai::Dynamic;
/// use rhai::def_package;
/// use rhai::packages::reg_binary;
///
/// fn add(x: i64, y: i64) -> i64 { x + y }
///
/// def_package!(rhai:MyPackage:"My super-duper package", lib,
/// {
/// reg_binary(lib, "my_add", add, |v, _| Ok(v.into()));
/// // ^^^^^^^^^^^^^^^^^^^
/// // map into Result<Dynamic, Box<EvalAltResult>>
/// });
/// ```
///
/// The above defines a package named 'MyPackage' with a single function named 'my_add'.
pub fn reg_binary<A: Variant + Clone, B: Variant + Clone, R>(
lib: &mut PackageStore,
fn_name: &'static str,
#[cfg(not(feature = "sync"))] func: impl Fn(A, B) -> R + 'static,
#[cfg(feature = "sync")] func: impl Fn(A, B) -> R + Send + Sync + 'static,
#[cfg(not(feature = "sync"))] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ 'static,
#[cfg(feature = "sync")] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ Send
+ Sync
+ 'static,
) {
//println!("register {}({}, {})", fn_name, crate::std::any::type_name::<A>(), crate::std::any::type_name::<B>());
let hash_fn_native = calc_fn_hash(
empty(),
fn_name,
[TypeId::of::<A>(), TypeId::of::<B>()].iter().cloned(),
);
let f = Box::new(move |args: &mut FnCallArgs, pos| {
let mut drain = args.iter_mut();
let x = mem::take(*drain.next().unwrap()).cast::<A>();
let y = mem::take(*drain.next().unwrap()).cast::<B>();
let r = func(x, y);
map_result(r, pos)
});
lib.functions
.insert(hash_fn_native, Box::new(NativeFunction::new(f, Pure)));
}
/// Add a function with two parameters (the first one being a mutable reference) to the package.
///
/// `map_result` is a function that maps the return type of the function to `Result<Dynamic, EvalAltResult>`.
///
/// # Examples
///
/// ```
/// use rhai::{Dynamic, EvalAltResult};
/// use rhai::def_package;
/// use rhai::packages::reg_binary_mut;
///
/// fn add(x: &mut i64, y: i64) -> Result<Dynamic, Box<EvalAltResult>> {
/// if y == 0 {
/// return Err("boo! cannot add zero!".into())
/// }
/// *x += y;
/// Ok(().into())
/// }
///
/// def_package!(rhai:MyPackage:"My super-duper package", lib,
/// {
/// reg_binary_mut(lib, "try_add", add, |r, _| r);
/// // ^^^^^^^^
/// // map into Result<Dynamic, Box<EvalAltResult>>
/// });
/// ```
///
/// The above defines a package named 'MyPackage' with a single fallible function named 'try_add'
/// which takes a first argument of `&mut`, return a `Result<Dynamic, Box<EvalAltResult>>`.
pub fn reg_binary_mut<A: Variant + Clone, B: Variant + Clone, R>(
lib: &mut PackageStore,
fn_name: &'static str,
#[cfg(not(feature = "sync"))] func: impl Fn(&mut A, B) -> R + 'static,
#[cfg(feature = "sync")] func: impl Fn(&mut A, B) -> R + Send + Sync + 'static,
#[cfg(not(feature = "sync"))] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ 'static,
#[cfg(feature = "sync")] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ Send
+ Sync
+ 'static,
) {
//println!("register {}(&mut {}, {})", fn_name, crate::std::any::type_name::<A>(), crate::std::any::type_name::<B>());
let hash_fn_native = calc_fn_hash(
empty(),
fn_name,
[TypeId::of::<A>(), TypeId::of::<B>()].iter().cloned(),
);
let f = Box::new(move |args: &mut FnCallArgs, pos| {
let mut drain = args.iter_mut();
let x: &mut A = drain.next().unwrap().downcast_mut().unwrap();
let y = mem::take(*drain.next().unwrap()).cast::<B>();
let r = func(x, y);
map_result(r, pos)
});
lib.functions
.insert(hash_fn_native, Box::new(NativeFunction::new(f, Method)));
}
/// Add a function with three parameters to the package.
///
/// `map_result` is a function that maps the return type of the function to `Result<Dynamic, EvalAltResult>`.
pub fn reg_trinary<A: Variant + Clone, B: Variant + Clone, C: Variant + Clone, R>(
lib: &mut PackageStore,
fn_name: &'static str,
#[cfg(not(feature = "sync"))] func: impl Fn(A, B, C) -> R + 'static,
#[cfg(feature = "sync")] func: impl Fn(A, B, C) -> R + Send + Sync + 'static,
#[cfg(not(feature = "sync"))] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ 'static,
#[cfg(feature = "sync")] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ Send
+ Sync
+ 'static,
) {
//println!("register {}({}, {}, {})", fn_name, crate::std::any::type_name::<A>(), crate::std::any::type_name::<B>(), crate::std::any::type_name::<C>());
let hash_fn_native = calc_fn_hash(
empty(),
fn_name,
[TypeId::of::<A>(), TypeId::of::<B>(), TypeId::of::<C>()]
.iter()
.cloned(),
);
let f = Box::new(move |args: &mut FnCallArgs, pos| {
let mut drain = args.iter_mut();
let x = mem::take(*drain.next().unwrap()).cast::<A>();
let y = mem::take(*drain.next().unwrap()).cast::<B>();
let z = mem::take(*drain.next().unwrap()).cast::<C>();
let r = func(x, y, z);
map_result(r, pos)
});
lib.functions
.insert(hash_fn_native, Box::new(NativeFunction::new(f, Pure)));
}
/// Add a function with three parameters (the first one is a mutable reference) to the package.
///
/// `map_result` is a function that maps the return type of the function to `Result<Dynamic, EvalAltResult>`.
pub fn reg_trinary_mut<A: Variant + Clone, B: Variant + Clone, C: Variant + Clone, R>(
lib: &mut PackageStore,
fn_name: &'static str,
#[cfg(not(feature = "sync"))] func: impl Fn(&mut A, B, C) -> R + 'static,
#[cfg(feature = "sync")] func: impl Fn(&mut A, B, C) -> R + Send + Sync + 'static,
#[cfg(not(feature = "sync"))] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ 'static,
#[cfg(feature = "sync")] map_result: impl Fn(R, Position) -> Result<Dynamic, Box<EvalAltResult>>
+ Send
+ Sync
+ 'static,
) {
//println!("register {}(&mut {}, {}, {})", fn_name, crate::std::any::type_name::<A>(), crate::std::any::type_name::<B>(), crate::std::any::type_name::<C>());
let hash_fn_native = calc_fn_hash(
empty(),
fn_name,
[TypeId::of::<A>(), TypeId::of::<B>(), TypeId::of::<C>()]
.iter()
.cloned(),
);
let f = Box::new(move |args: &mut FnCallArgs, pos| {
let mut drain = args.iter_mut();
let x: &mut A = drain.next().unwrap().downcast_mut().unwrap();
let y = mem::take(*drain.next().unwrap()).cast::<B>();
let z = mem::take(*drain.next().unwrap()).cast::<C>();
let r = func(x, y, z);
map_result(r, pos)
});
lib.functions
.insert(hash_fn_native, Box::new(NativeFunction::new(f, Method)));
}