feat: replace channel with semaphore for better performance
All checks were successful
continuous-integration/drone/push Build is passing

This commit is contained in:
2025-11-24 23:24:59 +01:00
parent 2b35c06d88
commit 38946f77c6
4 changed files with 146 additions and 93 deletions

View File

@@ -18,10 +18,10 @@ async fn main() -> anyhow::Result<()> {
workers
.add(move |_cancel| async move {
println!("Task {} starting...", i);
// Simulate some async work
tokio::time::sleep(tokio::time::Duration::from_millis(100 * (i as u64 + 1))).await;
println!("Task {} completed!", i);
Ok(())
})
@@ -36,4 +36,4 @@ async fn main() -> anyhow::Result<()> {
println!("\nAll tasks completed successfully!");
Ok(())
}
}

View File

@@ -17,15 +17,15 @@ async fn main() -> anyhow::Result<()> {
// Simulate a large dataset
let dataset: Vec<i32> = (1..=100).collect();
let total_items = dataset.len();
println!("Processing {} items in parallel...\n", total_items);
// Example 1: Simple parallel map
example_parallel_map(dataset.clone()).await?;
// Example 2: Pipeline with multiple stages
example_pipeline(dataset.clone()).await?;
// Example 3: Batch processing
example_batch_processing(dataset).await?;
@@ -35,147 +35,149 @@ async fn main() -> anyhow::Result<()> {
async fn example_parallel_map(dataset: Vec<i32>) -> anyhow::Result<()> {
println!("1. Simple Parallel Map");
println!("----------------------");
let mut workers = Workers::new();
// Use system CPU count for optimal parallelism
workers.with_limit_to_system_cpus();
let results = Arc::new(tokio::sync::Mutex::new(Vec::new()));
let processed = Arc::new(AtomicUsize::new(0));
let total = dataset.len();
let start = Instant::now();
for item in dataset {
let results = results.clone();
let processed = processed.clone();
workers
.add(move |_cancel| async move {
// Simulate CPU-intensive processing
let result = expensive_computation(item).await?;
// Store result
let mut res = results.lock().await;
res.push(result);
// Update progress
let count = processed.fetch_add(1, Ordering::SeqCst) + 1;
if count % 10 == 0 {
if count.is_multiple_of(10) {
println!(" Processed {}/{} items", count, total);
}
Ok(())
})
.await?;
}
workers.wait().await?;
let results = results.lock().await;
let sum: i32 = results.iter().sum();
println!(" Completed in {}ms", start.elapsed().as_millis());
println!(" Sum of results: {}\n", sum);
Ok(())
}
async fn example_pipeline(dataset: Vec<i32>) -> anyhow::Result<()> {
println!("2. Multi-Stage Pipeline");
println!("-----------------------");
// Stage 1: Transform
let stage1_output = Arc::new(tokio::sync::Mutex::new(Vec::new()));
let mut stage1 = Workers::new();
stage1.with_limit(4);
println!(" Stage 1: Transforming data...");
for item in dataset {
let output = stage1_output.clone();
stage1
.add(move |_| async move {
let transformed = item * 2;
tokio::time::sleep(Duration::from_millis(10)).await;
let mut out = output.lock().await;
out.push(transformed);
Ok(())
})
.await?;
}
stage1.wait().await?;
// Stage 2: Filter and aggregate
let stage2_output = Arc::new(tokio::sync::Mutex::new(Vec::new()));
let mut stage2 = Workers::new();
stage2.with_limit(2);
println!(" Stage 2: Filtering and aggregating...");
let stage1_data = stage1_output.lock().await.clone();
for chunk in stage1_data.chunks(10) {
let chunk = chunk.to_vec();
let output = stage2_output.clone();
stage2
.add(move |_| async move {
// Filter even numbers and sum
let filtered_sum: i32 = chunk.iter()
.filter(|&&x| x % 2 == 0)
.sum();
let filtered_sum: i32 = chunk.iter().filter(|&&x| x % 2 == 0).sum();
tokio::time::sleep(Duration::from_millis(20)).await;
let mut out = output.lock().await;
out.push(filtered_sum);
Ok(())
})
.await?;
}
stage2.wait().await?;
let final_results = stage2_output.lock().await;
let total: i32 = final_results.iter().sum();
println!(" Pipeline result: {}\n", total);
Ok(())
}
async fn example_batch_processing(dataset: Vec<i32>) -> anyhow::Result<()> {
println!("3. Batch Processing");
println!("-------------------");
let batch_size = 20;
let batches: Vec<Vec<i32>> = dataset
.chunks(batch_size)
.map(|chunk| chunk.to_vec())
.collect();
println!(" Processing {} batches of {} items each", batches.len(), batch_size);
println!(
" Processing {} batches of {} items each",
batches.len(),
batch_size
);
let mut workers = Workers::new();
workers.with_limit(3); // Process 3 batches concurrently
let results = Arc::new(tokio::sync::Mutex::new(Vec::new()));
let start = Instant::now();
for (batch_idx, batch) in batches.into_iter().enumerate() {
let results = results.clone();
workers
.add(move |cancel| async move {
println!(" Batch {} started", batch_idx);
// Process batch with cancellation support
tokio::select! {
batch_result = process_batch(batch, batch_idx) => {
@@ -200,38 +202,42 @@ async fn example_batch_processing(dataset: Vec<i32>) -> anyhow::Result<()> {
})
.await?;
}
workers.wait().await?;
let results = results.lock().await;
let total_processed: usize = results.iter().sum();
println!(" Processed {} items in {}ms\n", total_processed, start.elapsed().as_millis());
println!(
" Processed {} items in {}ms\n",
total_processed,
start.elapsed().as_millis()
);
Ok(())
}
async fn expensive_computation(n: i32) -> anyhow::Result<i32> {
// Simulate CPU-intensive work
tokio::time::sleep(Duration::from_millis(5)).await;
// Some complex calculation
let result = (n * n) + (n / 2) - 1;
Ok(result)
}
async fn process_batch(batch: Vec<i32>, _batch_idx: usize) -> anyhow::Result<usize> {
// Simulate batch processing
tokio::time::sleep(Duration::from_millis(100)).await;
// Process each item in the batch
let processed_count = batch.len();
// In a real scenario, you might:
// - Write to a database
// - Send to an API
// - Transform and save to files
Ok(processed_count)
}
}

View File

@@ -0,0 +1,62 @@
#![feature(random)]
use std::{random, sync::atomic::AtomicUsize};
use tokio_util::sync::CancellationToken;
static SLOW_IN_PROGRESS: AtomicUsize = AtomicUsize::new(0);
static FAST_IN_PROGRESS: AtomicUsize = AtomicUsize::new(0);
#[tokio::main]
async fn main() -> anyhow::Result<()> {
tokio::spawn(async move {
loop {
println!(
"slow: {}, fast: {}",
SLOW_IN_PROGRESS.load(std::sync::atomic::Ordering::Relaxed),
FAST_IN_PROGRESS.load(std::sync::atomic::Ordering::Relaxed)
);
tokio::time::sleep(std::time::Duration::from_millis(500)).await;
}
});
let mut workers = noworkers::Workers::new();
workers.with_limit(30);
for _ in 0..1000 {
let range: u16 = random::random(..);
if range < (u16::MAX / 4) {
workers.add(slow).await?;
continue;
}
workers.add(fast).await?;
}
workers.wait().await?;
Ok(())
}
async fn fast(_cancel: CancellationToken) -> anyhow::Result<()> {
FAST_IN_PROGRESS.fetch_add(1, std::sync::atomic::Ordering::SeqCst);
// println!("{}: running fast", now());
tokio::time::sleep(std::time::Duration::from_millis(200)).await;
FAST_IN_PROGRESS.fetch_sub(1, std::sync::atomic::Ordering::SeqCst);
Ok(())
}
async fn slow(_cancel: CancellationToken) -> anyhow::Result<()> {
SLOW_IN_PROGRESS.fetch_add(1, std::sync::atomic::Ordering::SeqCst);
// println!("{}: running slow", now());
tokio::time::sleep(std::time::Duration::from_secs(3)).await;
// println!("{}: completed slow", now());
SLOW_IN_PROGRESS.fetch_sub(1, std::sync::atomic::Ordering::SeqCst);
Ok(())
}
fn now() -> u128 {
std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap()
.as_millis()
}

View File

@@ -191,7 +191,10 @@
use std::{future::Future, sync::Arc};
use tokio::{sync::Mutex, task::JoinHandle};
use tokio::{
sync::{Mutex, OwnedSemaphorePermit, Semaphore},
task::JoinHandle,
};
use tokio_util::sync::CancellationToken;
/// Extension traits for common patterns.
@@ -322,8 +325,7 @@ enum WorkerLimit {
#[default]
NoLimit,
Amount {
queue: tokio::sync::mpsc::Sender<()>,
done: Arc<Mutex<tokio::sync::mpsc::Receiver<()>>>,
done: Arc<tokio::sync::Semaphore>,
},
}
@@ -331,18 +333,21 @@ impl WorkerLimit {
pub async fn queue_worker(&self) -> WorkerGuard {
match self {
WorkerLimit::NoLimit => {}
WorkerLimit::Amount { queue, .. } => {
WorkerLimit::Amount { done } => {
// Queue work, if the channel is limited, we will block until there is enough room
queue
.send(())
let permit = done
.clone()
.acquire_owned()
.await
.expect("tried to queue work on a closed worker channel");
.expect("to be able to acquire permit");
return WorkerGuard {
_permit: Some(permit),
};
}
}
WorkerGuard {
limit: self.clone(),
}
WorkerGuard { _permit: None }
}
}
@@ -353,24 +358,7 @@ impl WorkerLimit {
///
/// This type is not directly constructible by users.
pub struct WorkerGuard {
limit: WorkerLimit,
}
impl Drop for WorkerGuard {
fn drop(&mut self) {
match &self.limit {
WorkerLimit::NoLimit => { /* no limit on dequeue */ }
WorkerLimit::Amount { done, .. } => {
let done = done.clone();
tokio::spawn(async move {
let mut done = done.lock().await;
// dequeue an item, leave room for the next
done.recv().await
});
}
}
}
_permit: Option<OwnedSemaphorePermit>,
}
impl Workers {
@@ -542,11 +530,8 @@ impl Workers {
/// # }
/// ```
pub fn with_limit(&mut self, limit: usize) -> &mut Self {
let (tx, rx) = tokio::sync::mpsc::channel(limit);
self.limit = WorkerLimit::Amount {
queue: tx,
done: Arc::new(Mutex::new(rx)),
done: Arc::new(Semaphore::new(limit)),
};
self
}